The electrochemical deposition of Cu nanoparticles with an average diameter of approximately 25-35 nm has been reported at liquid-liquid interfaces by using the organic-phase electron-donor decamethylferrocene (DMFc). The electrodeposited Cu nanoparticles display excellent catalytic activity for the hydrogen evolution reaction (HER); this is the first reported catalytic effect of Cu nanoparticles at liquid-liquid interfaces.
The present study reports, for the first time, both a facile synthesis for ternary CuWS nanocubes, which were synthesized by a simple and low-cost hot-injection method, and the hydrogen evolution reaction at a biomembrane-like polarized water/1,2-dichloroethane interface catalyzed by CuWS nanocubes. The rate of hydrogen evolution reaction is increased by about 1000 times by using CuWS nanocubes when compared to an uncatalyzed reaction.
Copper nanoparticles were electrodeposited in situ on a conductive multi‐walled carbon nanotubes (MWCNT) support at a free‐standing water/1,2‐dichloroethane interface. The Cu/MWCNT nanocomposites act as highly active hydrogen evolution catalysts at the interface in the presence of lipophilic decamethylferrocene as the reducing agent.
Hydrogen evolution at polarized liquid-liquid interfaces [water/1,2-dichloroethane (DCE)] by the electron donor decamethylferrocene (DMFc) is catalyzed efficiently by the fabricated cobalt sulfide (CoS) nanoparticles and nanocomposites of CoS nanoparticles formed on multi-walled carbon nanotubes (CoS/CNT). The suspended CoS/CNT nanocomposite catalysts at the interface show a higher catalytic activity for the hydrogen evolution reaction (HER) than the CoS nanoparticles due to the high dispersity and conductivity of the CNT materials, which can serve as the main charge transport pathways for the injection of electrons to attain the catalytic sites of the nanoparticles. The reaction rate increased more than 1000-fold and 300-fold by using CoS/CNT and CoS catalysts, respectively, when compared to a non-catalyzed reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.