Abstract-We consider a unicast communication problem where, a source transmits information to a destination through a wireless network with the help of k relays positioned on a line. We adopt the linear deterministic model to capture the wireless signal interactions and study the optimal placement of the relays so that the capacity from the source to the destination in the deterministic network is maximized. Analytical results are provided for a number of special cases, and the insights gained are used to provide a heuristic framework for designing large relay networks.
We present a classification of epidemic-based approaches utilized in the context of mobile ad hoc networks (MANET) with a focus on reliable multicast protocols. We provide a brief description of the other approaches to reliable multicasting in MANETs as well. Then, we describe our protocol, namely EraMobile, offering Epidemic-based Reliable and Adaptive Multicast for Mobile ad hoc networks. EraMobile's target is group applications requiring high-level of reliability and the protocol aims to provide fully reliable multicast data delivery with minimal network overhead even in the adverse network conditions. EraMobile utilizes an epidemic-based method in multicast operation to cope with dynamic and unpredictable topology changes arising from the mobility. Our epidemic mechanism does not require the maintenance of any tree- or mesh-like structure for multicasting. It also needs neither having global or partial view of the network nor having information of neighboring nodes and group members. Besides, it substantially minimizes the overhead incurred by eliminating redundant data transmissions. Another distinguishing feature of EraMobile is its capability of adapting to varying node densities in order to provide reliable data delivery in both sparse networks, where the network connectivity is prone to interruptions, and dense networks, where congestion is likely to occur. EraMobile is shown to achieve fully reliable multicast data delivery studied through extensive simulations by outperforming the other protocols compared, especially in terms of both packet delivery ratio and overhead efficiency.
Abstract. In mobile ad hoc network research, simulation plays an important role in determining the network characteristics and measuring performance. On the other hand, unrealistic simulation conditions may be misleading, instead of being explanatory. For this reason, constructing simulation models closer to the real circumstances is very significant. Movement behavior of mobile entities is one of the most important concepts for the realistic simulation scenarios in mobile ad hoc networks. In this study, we first provide a survey and a new hybrid classification of existing mobility models in the literature. We implemented the random direction and boundless simulation area models on Scalable Wireless Ad Hoc Network Simulator (SWANS) and conducted simulations of Ad Hoc On-Demand Distance Vector (AODV) protocol for these as well as the random walk and random waypoint models. Our comparative results for the mobility models are discussed on a variety of simulation settings and parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.