A new topology optimization method called the Proportional Topology Optimization (PTO) is presented. As a non-sensitivity method, PTO is simple to understand, easy to implement, and is also efficient and accurate at the same time. It is implemented into two MATLAB programs to solve the stress constrained and minimum compliance problems. Descriptions of the algorithm and computer programs are provided in detail. The method is applied to solve three numerical examples for both types of problems. The method shows comparable efficiency and accuracy with an existing optimality criteria method which computes sensitivities. Also, the PTO stress constrained algorithm and minimum compliance algorithm are compared by feeding output from one algorithm to the other in an alternative manner, where the former yields lower maximum stress and volume fraction but higher compliance compared to the latter. Advantages and disadvantages of the proposed method and future works are discussed. The computer programs are self-contained and publicly shared in the website www.ptomethod.org.
Cellular structures are promising candidates for additive manufacturing (AM) due to their lower material and energy consumption. In this work, an efficient method is proposed for optimizing the topology of variable-density cellular structures to be fabricated by certain AM process. The method gains accuracy by relating the cellular structure's microstructure to continuous micromechanics models and achieves efficiency through conducting continuum topology optimization at macroscopic scale. The explicit cellular structure is then finally reconstructed by mapping the optimized continuous parameters (e.g., density) to cell structural parameters (e.g., strut diameter). The proposed method is validated by both finite element analysis and experimental tests on specimens manufactured by stereolithography.
Purpose
The purpose of the paper is to propose a homogenization-based topology optimization method to optimize the design of variable-density cellular structure, in order to achieve lightweight design and overcome some of the manufacturability issues in additive manufacturing.
Design/methodology/approach
First, homogenization is performed to capture the effective mechanical properties of cellular structures through the scaling law as a function their relative density. Second, the scaling law is used directly in the topology optimization algorithm to compute the optimal density distribution for the part being optimized. Third, a new technique is presented to reconstruct the computer-aided design (CAD) model of the optimal variable-density cellular structure. The proposed method is validated by comparing the results obtained through homogenized model, full-scale simulation and experimentally testing the optimized parts after being additive manufactured.
Findings
The test examples demonstrate that the homogenization-based method is efficient, accurate and is able to produce manufacturable designs.
Originality/value
The optimized designs in our examples also show significant increase in stiffness and strength when compared to the original designs with identical overall weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.