BackgroundComorbid neurobehavioral disturbances and type-2 diabetes mellitus (T2DM) warrant immediate research attention. Exenatide, which is a potent and selective agonist for the glucagon-like peptide-1 (GLP-1), is used in the treatment of T2DM. Exenatide displays a multitude of effects in the central nervous system. The aim of this study was to investigate the anxiolytic- and antidepressant-like effects and analgesic effects of exenatide in a type-2 diabetic mouse model.Material/MethodsModified elevated plus-maze test for anxiolytic-like, forced swimming test for depression-like behavior and hotplate test for neuropathy were used as behavioral tasks. Behavioral parameters were investigated in a streptozocin – (100 mg/kg, i.p.) and nicotinamide – (240 mg/kg, i.p.) induced type-2 diabetic mouse model. Exenatide (0.1 μg/kg, s.c., twice daily) was administered for 2 weeks. Vehicle (control), diabetic, and exenatide-treated diabetic mice were tested.ResultsOur results confirm that exenatide exerts anxiolytic- and antidepressant-like effects and might be effective in diabetic neuropathy in a diabetic mouse model.ConclusionsExenatide may be a good candidate as a treatment option for depression, anxiety, and neuropathy in patients with type-2 diabetes.
OBJECTIVE: In pain management, alternative medications are necessary due to the development of tolerance to traditional opioid analgesics. Literature data suggest that Nmethyl-D-aspartate (NMDA) receptor antagonizing drugs can induce antinociception, and can reduce the opioid requirement. Ketamine is a non-competitive NMDA receptor antagonist drug and has well-known antinociceptive properties. The drug acts not only on NMDA receptors but also has effects on the monoaminergic system and non-NMDA glutamatergic receptors which have vital roles in the regulation of pain. This study was conducted to investigate the serotonergic and glutamatergic involvement in low-dose ketamine (20 mg/ kg) analgesia in mice. METHOD: The effects of serotonin were suppressed with two different ways; either the serotonin was depleted with p-chlorophenylalanine (pCPA, 150 mg/kg/d; 4 days) or the serotonin receptors were blocked with methiothepin (0.1 mg/kg), and α-amino-3-hydroxy-5methyl-4-isoxazole propionic acid (AMPA) receptors were antagonized with GYKI-52466 (20 mg/kg). Fluoxetine (20 mg/kg; 7 days) was used to increase the serotoninergic activity. We used a hotplate (HP) test to measure pain reaction latencies. Furthermore, we tested sustained analgesic effects of ketamine for six consecutive times (1-hour break between each test). RESULTS: In our experiment, ketamine treatment increased pain reaction latencies, yet it failed to increase the latencies when combined with antiserotonergic drugs, e.g. pCPA and methiothepin. The latencies were increased with AMPA receptor blockade, yet ketamine did not increase the analgesic effect of the AMPA receptor antagonist, i.e. GYKI-52466. In consecutive tests, ketamine was effective for 5 h, and the peak effect was seen at the 3rd-hour test. CONCLUSION: Our data suggest that the activity of the serotonergic system and AMPA receptors are necessary for ketamine to produce antinociceptive effects. In pain management, ketamine can offer an alternative option to traditional analgesics and may be useful to reduce opioid tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.