Composite materials, obtained by combining two or more materials; It is defined as a new type of material with high strength, high rigidity and lightness. Composite plates are structural elements that are used in machines and structures under different loads, consist of at least two types of materials and can be produced in various constructions. In this study, elastic-plastic stress analysis of polymer matrix continuous fiber reinforced composite plate under axial load was solved with Airy Stress Function proposed as a 5th order non-uniform polynomial to solve the elasticity problem. Polyethylene matrix composite reinforced with steel fibers was taken as the plate material and the material was accepted as ideal elastic-plastic. Tsai-Hill Yield Criterion was used for the plastic solution. According to the results of the analysis, as the fiber angle increased in the composite plate, the plastic stress limit decreased, the increase in the fiber angle decreased the plastic stress limit, and the decrease in the plastic stress limit caused the residual stresses to increase.
Composite materials obtained by combining two or more materials macroscopically; It is expressed as a new type of material with low specific gravity, high strength and high rigidity properties. Composite materials are materials that are used under different loads and can be produced in various constructions. In this study, the effects of fiber orientation angle degrees on stress and deformation in composite plates with different fiber materials were investigated using the finite element method. Graphite, glass and aramid as fiber materials; Epoxy was chosen as the matrix material. According to the analysis results, while the stress and deformation values increased as the fiber angle increased in the graphite and aramid fiber epoxy matrix composite plates, the stress and deformation values did not change at different fiber angles in the glass fiber epoxy matrix composite plate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.