Protein phosphorylation is a posttranslational modification of kinase proteins that changes protein’s conformation to regulate crucial biological functions. However, phosphorylation of protein is significantly altered during cancer progression which triggers...
Detecting circulating biomarkers sensitively and quantitatively is paramount for cancer screening, diagnosis, and treatment selection. Particularly, screening of a panel of circulating protein biomarkers followed by mapping of individual biomarkers could assist better diagnosis and understanding of the cancer progression mechanisms. Herein, we present a miniaturized biosensing platform with dual readout schemes (electrochemical and Surface enhanced Raman scattering (SERS)) for rapid cancer screening and specific biomarker expressional profiling to support cancer management. Our approach utilizes a controlled nanomixing phenomena under alternative current electrohydrodynamic condition to improve the isolation of cancer-associated circulating proteins (i.e., Epidermal growth factor receptor (EGFR), BRAF, Programmed death-ligand 1 (PD-L1)) with antibody functionalized sensor surface for rapid and efficient isolation of the targets and subsequent labelling with SERS nanotags. The method employs Differential Pulse Voltammetry (DPV) for rapidly screening for the presence of the circulating proteins on biosensor surface irrespective of their type. Upon positive DPV detection, SERS is applied for sensitive read-out of individual biomarkers biomarker levels. In a proof-of-concept study, we demonstrate the dual detection biosensor for analysing circulating BRAF, EGFR and PDL-1 proteins and successfully screened both ensemble and individual biomarker expressional levels as low as 10 pg (1 ng/mL). Our findings clearly indicate the potential of the proposed method for cancer biomarker analysis which may drive the translation of this dual sensing concept in clinical settings.
Tumor cells display heterogenous molecular signatures during the course of cancer and create distinct tumor cell subpopulations which challenge effective therapeutic decisions. Detection and monitoring of these heterogenous molecular events at single cell level are imperative to identify tumor cell subpopulations and to engage the best therapeutic options for the individual patient. Herein, a microfluidic liquid biopsy platform to analyze circulating tumor cells (CTCs) at single cell level is reported. The individual CTCs are captured in an alternating current‐induced microfluidic platform and analyzed by using surface‐enhanced Raman scattering spectroscopy. This platform selectively captures single CTCs from the patient's peripheral blood mononuclear cells. Using cell line models and patient samples, it is shown that the assay can simultaneously detect multiple protein biomarkers on a single CTC. The platform can stratify the CTCs into different subpopulations based on their cancer‐associated protein signature changes in response to drug treatment. This enables the identification of CTC subpopulations that are probably not responding to treatment and may assist clinicians in specifically monitoring and eliminating therapy‐resistant cancer cells within a lesion. This single CTC monitoring chip will likely have high clinical importance in disease diagnosis and treatment monitoring, and advance the knowledge of cancer heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.