A new environmental bacterial strain exhibited strong antimicrobial characteristics against methicillin-resistant Staphylococcus aureus, vancomycin-resistant strains of Enterococcus faecalis and Lactobacillus plantarum, and other Gram-positive bacteria. The producer strain, designated OSY-I 1 , was determined to be Brevibacillus laterosporus via morphological, biochemical, and genetic analyses. The antimicrobial agent was extracted from cells of OSY-I 1 with isopropanol, purified by high-performance liquid chromatography, and structurally analyzed using mass spectrometry (MS) and nuclear magnetic resonance (NMR). The MS and NMR results, taken together, uncovered a linear lipopeptide consisting of 13 amino acids and an N-terminal C 6 fatty acid (FA) chain, 2-hydroxy-3-methylpentanoic acid. The lipopeptide (FA-Dhb-Leu-Orn-Ile-Ile-Val-Lys-Val-Val-Lys-Tyr-Leu-valinol, where Dhb is ␣,-didehydrobutyric acid and valinol is 2-amino-3-methyl-1-butanol) has a molecular mass of 1,583.0794 Da and contains three modified amino acid residues: ␣,-didehydrobutyric acid, ornithine, and valinol. The compound, designated brevibacillin, was determined to be a member of a cationic lipopeptide antibiotic family. In addition to its potency against drugresistant bacteria, brevibacillin also exhibited low MICs (1 to 8 g/ml) against selected foodborne pathogenic and spoilage bacteria, such as Listeria monocytogenes, Bacillus cereus, and Alicyclobacillus acidoterrestris. Purified brevibacillin showed no sign of degradation when it was held at 80°C for 60 min, and it retained at least 50% of its antimicrobial activity when it was held for 22 h under acidic or alkaline conditions. On the basis of these findings, brevibacillin is a potent antimicrobial lipopeptide which is potentially useful to combat drug-resistant bacterial pathogens and foodborne pathogenic and spoilage bacteria. U nregulated access to antibiotics is one of the main reasons for the spread of antibiotic-resistant pathogens and their resistance genes through migration, travel, and trade (1). It was reported that in Europe alone, 25,000 patients die annually because of bacterial infections which cannot be treated with common antibiotics (2). Examples of antibiotic-resistant bacteria are methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus spp., carbapenem-resistant Mycobacterium tuberculosis, and highly virulent multidrug-resistant Clostridium difficile strains (2-5). Therefore, the discovery and development of new antimicrobial agents are of paramount importance. Despite their natural scarcity, new antimicrobial agents can be discovered by subjecting microorganisms that potentially produce such agents to screening and isolation processes (6, 7).The current study led to the discovery of a new strain of Brevibacillus sp. with promising antimicrobial activity. The genus Brevibacillus was established in 1996 on the basis of a genetic reclassification of strains previously recognized to be Bacillus brevis (8). Many bioactive compounds have been...
Paenibacterin is a broad-spectrum lipopeptide antimicrobial agent produced by Paenibacillus thiaminolyticus OSY-SE. The compound consists of a cyclic 13-residue peptide and an N-terminal C 15 fatty acyl chain. The mechanism of action of paenibacterin against Escherichia coli and Staphylococcus aureus was investigated in this study. The cationic lipopeptide paenibacterin showed a strong affinity for the negatively charged lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria. Addition of LPS (100 g/ml) completely eliminated the antimicrobial activity of paenibacterin against E. coli. The electrostatic interaction between paenibacterin and LPS may have displaced the divalent cations on the LPS network and thus facilitated the uptake of antibiotic into Gram-negative cells. Paenibacterin also damaged the bacterial cytoplasmic membrane, as evidenced by the depolarization of membrane potential and leakage of intracellular potassium ions from cells of E. coli and S. aureus. Therefore, the bactericidal activity of paenibacterin is attributed to disruption of the outer membrane of Gram-negative bacteria and damage of the cytoplasmic membrane of both Gram-negative and Gram-positive bacteria. Despite the evidence of membrane damage, this study does not rule out additional bactericidal mechanisms potentially exerted by paenibacterin.
Chemically induced DNA adducts can lead to mutations and cancer. Unfortunately, because common analytical methods (e.g., liquid chromatography-mass spectrometry) require adducts to be digested or liberated from DNA before quantification, information about their positions within the DNA sequence is lost. Advances in nanopore sequencing technologies allow individual DNA molecules to be analyzed at single-nucleobase resolution, enabling us to study the dynamic of epigenetic modifications and exposure-induced DNA adducts in their native forms on the DNA strand. We applied and evaluated the commercially available Oxford Nanopore Technology (ONT) sequencing platform for site-specific detection of DNA adducts and for distinguishing individual alkylated DNA adducts. Using ONT and the publicly available ELIGOS software, we analyzed a library of 15 plasmids containing site-specifically inserted O 6- or N 2-alkyl-2′-deoxyguanosine lesions differing in sizes and regiochemistries. Positions of DNA adducts were correctly located, and individual DNA adducts were clearly distinguished from each other.
Brevibacillin is a newly-discovered antimicrobial lipopeptide produced by Brevibacillus laterosporus OSY-I. It is active against Gram-positive bacteria, including antibiotic resistant strains. This research was initiated to investigate the mechanism of action of brevibacillin against an indicator strain, Staphylococcus aureus ATCC 6538. Results of the study proved that brevibacillin binds to lipoteichoic acid (LTA) on cell wall before interacting with cell membrane. Additionally, brevibacillin disrupts S. aureus cytoplasmic membrane by increasing its permeability, depolarization and potassium leakage. Therefore, cytoplasmic membrane serves as a major target for brevibacillin. Despite the presence of multiple sites on S. aureus cell envelope, scanning electron microscope observation didn't reveal evidence of cell lysis or any morphological defects in cells treated with brevibacillin. Based on the results of this study, we propose that the electrostatic interaction between the cationic brevibacillin and the anionic LTA helped the accumulation of the antimicrobial agent at cell surface; this was followed by translocation of the lipopeptide to the cytoplasmic membrane and disrupting its vital functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.