Flexible and transparent applications have become an emerging technology and have shifted to the forefront of materials science research in recent years. Transparent conductive oxide films have been applied for flat panel displays, solar cells, and transparent glass coatings. However, none of them can fulfill the requirements for advanced transparent flexible devices, such as high-frequency applications. Here, we present a promising technique for transparent flexible conducting oxide heteroepitaxial films: the direct fabrication of epitaxial molybdenum-doped indium oxide (IMO) thin films on a transparent flexible muscovite substrate. An n-type epitaxial IMO film is demonstrated with a mobility of 109 cm2 V−1 s−1, a figure of merit of 0.0976 Ω−1, a resistivity of 4.5 × 10−5 Ω cm and an average optical transmittance of 81.8% in the visible regime. This heteroepitaxial system not only exhibits excellent electrical and optical performance but also shows excellent mechanical durability. Our results illustrate that this is an outstanding way to fabricate transparent and flexible conducting elements for the evolution and expansion of next-generation smart devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.