Presently, liquid crystal displays (LCDs) and organic light-emitting diode (OLED) displays are two dominant flat panel display technologies. Recently, inorganic mini-LEDs (mLEDs) and micro-LEDs (μLEDs) have emerged by significantly enhancing the dynamic range of LCDs or as sunlight readable emissive displays. "mLED, OLED, or μLED: who wins?" is a heated debatable question. In this review, we conduct a comprehensive analysis on the material properties, device structures, and performance of mLED/μLED/OLED emissive displays and mLED backlit LCDs. We evaluate the power consumption and ambient contrast ratio of each display in depth and systematically compare the motion picture response time, dynamic range, and adaptability to flexible/transparent displays. The pros and cons of mLED, OLED, and μLED displays are analysed, and their future perspectives are discussed.
With rapid advances in high-speed communication and computation, augmented reality (AR) and virtual reality (VR) are emerging as next-generation display platforms for deeper human-digital interactions. Nonetheless, to simultaneously match the exceptional performance of human vision and keep the near-eye display module compact and lightweight imposes unprecedented challenges on optical engineering. Fortunately, recent progress in holographic optical elements (HOEs) and lithography-enabled devices provide innovative ways to tackle these obstacles in AR and VR that are otherwise difficult with traditional optics. In this review, we begin with introducing the basic structures of AR and VR headsets, and then describing the operation principles of various HOEs and lithography-enabled devices. Their properties are analyzed in detail, including strong selectivity on wavelength and incident angle, and multiplexing ability of volume HOEs, polarization dependency and active switching of liquid crystal HOEs, device fabrication, and properties of micro-LEDs (light-emitting diodes), and large design freedoms of metasurfaces. Afterwards, we discuss how these devices help enhance the AR and VR performance, with detailed description and analysis of some state-of-the-art architectures. Finally, we cast a perspective on potential developments and research directions of these photonic devices for future AR and VR displays.
Recently, "liquid crystal display (LCD), organic light-emitting diode (OLED), or micro-light-emitting diode (LED): who wins?" is a heated debatable question. In this review article, we provide a comprehensive overview of these three promising display technologies through nine display performance indicators, including ambient contrast ratio, motion picture response time, viewing angle and angular color shift, color gamut, resolution density, power consumption, cost, lifetime, and thin profile and panel flexibility. The advantages and disadvantages of each technology are analyzed, and their future perspectives are discussed.
Liquid crystal displays (LCDs) and photonic devices play a pivotal role to augmented reality (AR) and virtual reality (VR). The recently emerging high-dynamic-range (HDR) mini-LED backlit LCDs significantly boost the image quality and brightness and reduce the power consumption for VR displays. Such a light engine is particularly attractive for compensating the optical loss of pancake structure to achieve compact and lightweight VR headsets. On the other hand, high-resolution-density, and high-brightness liquid-crystal-on-silicon (LCoS) is a promising image source for the see-through AR displays, especially under high ambient lighting conditions. Meanwhile, the high-speed LCoS spatial light modulators open a new door for holographic displays and focal surface displays. Finally, the ultrathin planar diffractive LC optical elements, such as geometric phase LC grating and lens, have found useful applications in AR and VR for enhancing resolution, widening field-of-view, suppressing chromatic aberrations, creating multiplanes to overcome the vergence-accommodation conflict, and dynamic pupil steering to achieve gaze-matched Maxwellian displays, just to name a few. The operation principles, potential applications, and future challenges of these advanced LC devices will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.