NiS was synthesized were prepared by hydrothermal and mechanical alloying routes, respectively, and their microstructures as well as physical and electrochemical properties have been characterized and compared. Based on XRD and SEM analyses, the NiS crystallites with nanoplate structure formed directly during a hydrothermal process. Compared with the mechanical alloying route, the hydrothermal route led to better dispersed nanoparticles with a narrower size distribution. And the electrochemical properties of the materials were characterized by charge-discharge testing and Cyclic-voltammetry. NiS were prepared by hydrothermal show proper cycling properties, its first discharge specific capacity was 584.6mAh/g.
This template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text. Common and cheap organic matters (Glucose anhydrous, Citric acid, Vitamin C, Sucrose) were selected for carbon coatings on LiFePO4. The four pre-treatment processes were employed to optimize the carbon coating process, and through solid state-carbothermal reduction synthesis of LiFePO4/C composites. The structure, morphology and electrochemical performance of the material were studied by XRD, SEM and galvanostatic charge-discharge methods. It is observed that the tap density of citric acid coating material can reach 1.44 g/ml. Conductivity increased four orders of magnitude. At room temperature, the initial discharge specific capacity of the materials is as high as 89.6 mAh/g at 5.0 C (corresponding to 850 mA/g). After 30 cycles, the capacity is 83.9 mAh/g and decay only 2.0 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.