IntroductionPotato is one of the most valuable food crop grown in many countries [1]. It has been reported that, a considerable proportion of the potato cultivated globally consumed through starch processing which subsequently generates tons of wastewater that goes to pollute water bodies [1][2][3]. Wastewater of raw potato processed into starch are classified as complex wastewater [4,5], and its concentration of chemical oxygen demand (COD), total suspended solid (TSS) and volatile suspended solid of (VSS) can yield concentrations of 50000, 9700 and 9500 mg/L, respectively [6]. Arhoun et al. argued that recovering valuable resource such as bioenergy (biogas) from such wastewater to supplement energy needs will be beneficial to humans and society at large [6,7]. Anaerobic digestion has severally been reported as a successful bioprocess treating various organic wastewaters and subsequently generating biogas [7][8][9][10][11][12]. However, the biological mechanism of anaerobic digestion is not well understood due to the complexity of the bacterial community structure and bioconversion [13]. Hu et al. asserted that process modeling is a good tool for predicting and describing the performance of biological processes [13]. Other reports also confirmed that process modeling based on previously acquired data is one technical route to enhancing the performance of anaerobic processes. These process models are often developed [14,15]. Nonetheless, modeling of anaerobic digestion is quite challenging and tough because performance of anaerobic systems is complex and varies considerably with influent characteristics and operational conditions [16].Some predictive models have been developed in the past decades for biogas estimation during anaerobic treatment processes. For instance, a regression analysis model for estimating biogas generated in a landfill leachate treatment process was developed by Akaya et al. AbstractHerein, a modeling approach to predict biogas yield within a mesophilic (35 ± 1°C) upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW) for pollutant removal was conducted. HRTs and seven anaerobic process-related parameters viz; chemical oxygen demand (COD), ammonium (NH 4 + ), alkalinity, total Kjeldahl Nitrogen, total phosphorus, volatile fatty acids (VFAs) and pH with average concentration of 4028.91, 110.09, 4944.67, 510.47, 45.20, 534.44 mg/L and 7.09, respectively, were used as input variables (x) to develop stochastic models for predicting biogas yield from the anaerobic digestion of PSPW. Based on the prediction accuracy of the models, it was established that, prediction of biogas yield from the UASB with the combination of COD, NH 4 + and HRT, or COD, NH 4 + , HRT and VFAs as input variables proved more efficient as opposed to HRT, alkalinity, total Kjeldahl Nitrogen, total phosphorus and pH. Highest coefficient of determination (R 2 ) observed was 97.29%, suggesting the efficiency of the models in making predictions. The developed models efficiencies co...
Effect of cationic polymer on granulation and COD removal efficiency in lab scale UASB reactors was examined, treating low-strength wastewater (COD 300-500mg l-1) at room temperature. It was shown that cationic polymer was more effective for enhancing sludge granulation and COD removal efficiency as compared to the control experiment (without additives). After day 166 of operation, the amount of granules size above 0.5mm accounted for 32.1% of total sludge, higher than that of control experiment (19.3%). At 1.03 kg COD m-3 d-1 of OLR and 9.8 h of HRT, the effluent VFA had a maximum value of 168mg l-1 and 240mg l-1 in Reactor A and B respectively. The polymer-amended reactor took 36days to receive 1.44 kg COD m-3 d-1 of OLR at the 7.8 h of HRT, shorter than the control reactor (54days). The two reactors obtained above 80% in COD removal efficiency. It is shown that UASB reactor can also achieve higher COD removal treating low strength wastewater at room temperature.
Characteristics of anaerobic granules before and after acclimation were studied using glucose as co-substrate. Removal efficiencies of 2,6-dinitrophenol (2,6-DNP) using two different co-substrates were investigated in two lab-scale UASB reactors. Granular sludge acclimatized to the wastewater containing 2,6-DNP through 3 months. After acclimation, SEM pictures of the granular biomass showed that Filamentous bacteria were the predominant bacteria on the surface of granules. Throughout the study of 2,6-DNP anaerobic degradation with different co-substrates, influent COD concentration was kept constant as about 2500 mg l-1. Maximum 2,6-DNP concentration was 170.0 mg l-1 and 2,6-DNP removal efficiencies were always more than 98.0% using glucose as co-substrate, keeping hydraulic retention time (HRT) as 35 h. When using sodium acetate as co-substrate and keeping HRT as 30 h, maximum 2,6-DNP concentration was up to 189.5 mg l-1 and over 99.2% 2,6-DNP removal efficiencies could be obtained.
The main purpose of this study was to treat organic pollutants, nitrogen and phosphorus in polluted river water by the use of constructed wetland (CW) systems. A laboratory experiment research was conducted on subsurface flow constructed wetland systems operated in vertical flow (VF) and horizontal flow (HF) mode. The systems were unplanted and hydraulic retention times were identically 2.7 days. The average removal efficiencies for HFCW and VFCW were NH+ 4-N 64.9% and 75.2%, NO- 3-N 92.3% and 40.1%, COD 97.5% and 90.1%, TP 94.6% and 96.2%, respectively. The removal of NH+ 4-N and NO- 3-N in the different CW units were in order of VFCW (drained) > VFCW (flooded) > HFCW and HFCW > VFCW (flooded) > VFCW (drained), respectively. When the water level in the VFCW was changed, an obvious fluctuation of the effluent NH+ 4-N and NO- 3-N concentrations was observed.
Two laboratory scale constructed wetlands were designed as horizon subsurface flow constructed wetland (HFCW) and vertical flow constructed wetland (VFCW) and were utilized to study the treatment capacity to reduce nitrogen. According to different inflow concentration and height of water surface, HFCW was analyzed in two operational modes and VFCW in four operational modes. The semi-submerged VFCW had the best capacity to remove nitrogen and the total nitrogen removal rate reached to 92% and the removal rate of HFCW was 90%. Moreover, the un-submerged VFCW could reduce 93% ammonia but nitrate removal rate just was 9%. And the removal rates of NH4+-N, NO3--N and TN respectively were 85%, 80% and 81% in submerged VFCW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.