This paper aims at providing a sound theoretical solution to auxiliary central hole and the cutting parameters. For this purpose, the forming mechanism of V-cut cavity for cutting blasting was performed based on the hypothetical rock breaking mechanism of V-cut blasting. A theoretical solution for increasing the critical depth of the auxiliary center cuthole and the criteria for increasing the cuthole diameter of various types of cutholes when the rock attributes, explosive properties, and cuthole dip angle are constant are proposed. (1) If charging length le < 0.75H/sin θ, no auxiliary cuthole is needed. (2) If 0.75H/sin θ < le < 0.75H/sin θ + (2∼4) × 0.1, a central vertical auxiliary hole is needed. (3) If 0.75H/sin θ + (2∼4) × 0.1 < le < 0.75(H/sin θ + Hi/sin θi), a shallow inclined hole is needed. (4) If le > 0.75(H/sin θ + Hi/sin θi), both the central vertical cuthole and the shallow inclined cuthole are needed. Meanwhile, the theoretical solution was verified by numerical modelling with ANSYS/LS-DYNA. Moreover, the field implementation of the V-cut and the auxiliary hole effectively improved the blasting effect in both efficiency and economy.
The computation of grain burning surface regression plays a very important role in the internal ballistic performance evaluation of solid rocket motor, however, the traditional methods such as geometry-based one could not handle the self-intersection and characteristic geometric element disappearing problems. This paper presents an effective and efficient framework to simulate 3D grain burning surface regression with level set method which is combined with Fast Marching technique to constrain the calculation area only around the burning surface. At last, a typical grain example is given by our framework to verify our method’s effectiveness and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.