Imaging depth and quality of optical microscopy can be enhanced by optical clearing. Here we investigate the optical clearing of the ex vivo human skin by 50% glycerol topical application, which is allowed for cosmetic usage. Harmonic generation microscopy, by combining second and third harmonic generation (THG) modalities, was utilized to examine the clearing effect. The THG image intensity is sensitive to the improved optical homogeneity after optical clearing, and the second harmonic generation (SHG) image intensity in the dermis could serve as a beacon to confirm the reduction of the scattering in the epidermis layer. As a result, our study supports the OC effect through 50% glycerol topical application. Our study further indicates the critical role of stratum corneum shrinkage for the observed SHG and THG signal recovery.
We demonstrated a power enhancement method in harmonic generation microscopy based on deep learning to reduce the optical input power and consequently reduce the risk of photodamage.
This work proposes an unsupervised deep learning-based image translation from Harmonic generation microscopy (HGM) to widely used H&E-stained images. The proposed methodology is promising and hopefully will facilitate adopting HGM in clinical workflows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.