This paper investigates the hybrid-driven-based networked control for an offshore steel jacket platform subject to external wave forces. A hybrid driven strategy is introduced to deal with the problem of networked control for offshore platforms. Then, the networked closed-loop system is modeled as a stochastic delay system. Based on this model, a stability criterion is derived using the stochastic control theory and the Lyapunov-Krasovskii functional method. Simulation results show that the hybrid-driven-based networked H ∞ controller is effective to suppress the vibration of the platform and save the limited network resources as well. Moreover, the designed controller is flexible in terms of maintaining a balance between performance requirements of the offshore platform and the utilization of communication network bandwidth. INDEX TERMS Offshore platform, networked control system, H ∞ control, stochastic system, hybrid driven strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.