The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article.
The surface properties of aluminum, such as chemical composition, roughness, friction, adhesion, and wear, can play an important role in the performance of micro-/nano-electromechanical systems, e.g., digital micromirror devices. Aluminum substrates chemically reacted with octadecylphosphonic acid (ODP/Al), decylphosphonic acid (DP/Al), and octylphosphonic acid (OP/Al) have been investigated and characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy (AFM). XPS analysis confirmed the presence of alkylphosphonate molecules on ODP/Al, DP/Al, and OP/Al. No phosphonates were found on bare Al as a control. The sessile drop static contact angle of pure water on ODP/Al and DP/Al was typically more than 115 degrees and on OP/Al typically less than 105 degrees indicating that all phosphonic acid reacted Al samples were highly hydrophobic. The root-mean-square surface roughness for ODP/Al, DP/Al, OP/Al, and bare Al was less than 15 nm as determined by AFM. The surface energy for ODP/Al and DP/Al was determined to be approximately 21 and 22 mJ/m2, respectively, by the Zisman plot method, compared to 25 mJ/m2 for OP/Al. ODP/Al and OP/Al were studied by friction force microscopy, a derivative of AFM, to better understand their micro-/nano-tribological properties. ODP/Al gave the lowest coefficient of friction values while bare Al gave the highest. The adhesion forces for ODP/Al and OP/Al were comparable.
Substrates of aluminum (Al) deposited by physical vapor deposition onto Si substrates and then chemically reacted with perfluorodecylphosphonic acid (PFDPAlSi), decylphosphonic acid (DPAlSi), and octadecylphosphonic acid (ODPAlSi) were studied by x-ray photoelectron spectroscopy (XPS), contact angle measurements, atomic force microscopy (AFM), and friction force microscopy, a derivative of AFM, to characterize their surface chemical composition, roughness, and micro-/nanotribological properties. XPS analysis confirmed the presence of perfluorinated and nonperfluorinated alkylphosphonate molecules on the PFDPAlSi, DPAlSi, and ODPAlSi. The sessile drop static contact angle of pure water on PFDPAlSi was typically more than 130 degrees and on DPAlSi and ODPAlSi typically more than 125 degrees indicating that all phosphonic acid reacted AlSi samples were very hydrophobic. The surface roughness for PFDPAlSi, DPAlSi, ODPAlSi, and bare AlSi was approximately 35 nm as determined by AFM. The surface energy for PFDPAlSi was determined to be approximately 11 mNm by the Zisman plot method compared to 21 and 20 mNm for DPAlSi and ODPAlSi, respectively. Tribology involves the measure of lateral forces due to friction and adhesion between two surfaces. Friction, adhesion, and wear play important roles in the performance of micro-/nanoelectromechanical systems. PFDPAlSi gave the lowest adhesion and coefficient of friction values while bare AlSi gave the highest. The adhesion and coefficient of friction values for DPAlSi and ODPAlSi were comparable.
Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
The performance of micro- and nanoelectromechanical systems depends on the surface properties of the substrate material, such as chemical composition, roughness, friction, adhesion, and wear. Substrates of aluminum deposited onto Si (Al/Si) have been chemically reacted with perfluorodecyldimethylchlorosilane (PFMS), octadecylphosphonic acid (ODP), decylphosphonic acid (DP), octylphosphonic acid (OP), and perfluorodecylphosphonic acid (PFDP) and then characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy (AFM). PFMS/Al self-assembled monolayers (SAMs) were studied by friction force microscopy, a derivative of AFM, to better understand their micro- and nanotribological properties. The adhesion forces for PFMS/Al SAMs were found to be lower when compared to those of bare Al/Si; however, the coefficient of friction for both was comparable. XPS analysis revealed the presence of the corresponding alkyl chain molecules on PFMS/Al, ODP/Al, DP/Al, OP/Al, and PFDP/Al SAMs. The sessile drop static contact angle of pure water demonstrates that all the SAMs are extremely hydrophobic, giving contact angles typically >130° on PFDP/Al, ODP/Al, and PFMS/Al SAMs and >125° on DP/Al and OP/Al SAMs. The surface energy of PFMS/Al SAMs determined by the Zisman plot method is 16.5 ± 2 mJ/m2 (mN/m). The rms surface roughness of ODP/Al, DP/Al, OP/Al, PFMS/Al, and PFDP/Al SAMs, before exposure to warm nitric acid (pH 1.8, 30 min, 60−95 °C), as well as bare Al, is less than 40 nm as determined by AFM. The XPS data and stability against harsh chemical conditions indicate that a type of bond forms between a phosphonic acid or silane molecule and the oxidized Al/Si surface. Stability tests using warm nitric acid (pH 1.8, 30 min, 60−95 °C) show ODP/Al SAMs to be the most stable followed by PFDP/Al, DP/Al, PFMS/Al, and OP/Al SAMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.