Artificial Neural Network (ANN) has played a significant role in many areas because of its ability to solve many complex problems that mathematical methods failed to solve. However, it has some shortcomings that lead it to stop working in some cases or decrease the result accuracy. In this research the authors propose a new approach combining particle swarm optimization algorithm (PSO) and genetic algorithm (GA), to increase the classification accuracy of ANN. The proposed approach utilizes the advantages of both PSO and GA to overcome the local minima problem of ANN, which prevents ANN from improving the classification accuracy. The algorithms start with using backpropagation algorithm, then it keeps repeating applying GA followed by PSO until the optimum classification is reached. The proposed approach is domain independent and has been evaluated by applying it using nine datasets with various domains and characteristics. A comparative study has been performed between the authors' proposed approach and other previous approaches, the results show the superiority of our approach.
Artificial Neural Network (ANN) has played a significant role in many areas because of its ability to solve many complex problems that mathematical methods failed to solve. However, it has some shortcomings that lead it to stop working in some cases or decrease the result accuracy. In this research the authors propose a new approach combining particle swarm optimization algorithm (PSO) and genetic algorithm (GA), to increase the classification accuracy of ANN. The proposed approach utilizes the advantages of both PSO and GA to overcome the local minima problem of ANN, which prevents ANN from improving the classification accuracy. The algorithms start with using backpropagation algorithm, then it keeps repeating applying GA followed by PSO until the optimum classification is reached. The proposed approach is domain independent and has been evaluated by applying it using nine datasets with various domains and characteristics. A comparative study has been performed between the authors' proposed approach and other previous approaches, the results show the superiority of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.