Background: Cadmium (Cd), one of the most abundant heavy metals, is extremely toxic to both humans and animals. hIt is well known that zinc (Zn) administration reduces Cd-induced toxicity and that metallothioneins can have a protective effect in biological systems to mitigate Cd toxicity. Objective: The aim of the current study to determine if Zn administration affected the induction of MT-1 and MT-2 in the liver tissue in mice exposed to Cd. Materials and methods: Metallothionein protein (MT) level in the tissue of male mice were detected using the anionexchang high-performance liquid chromatography coupled (HPLC)assay and immunohistochemical staining. Results: Single treatment to zinc or cadmium increase the level of MT in the liver, but zinc chloride treated significantly increase the level of MT after sub chronic treatment. Conclusion: Zinc pre-treatment with increasing the concentration of the dose of cadmium used in the co-treatment, and both of them may have worked together to induce a significant increase in protein synthesis to exceed the high toxicity of cadmium, by inducing an increase in MT protein synthesis.
The heavy metal cadmium is extremely harmful to both humans and animals. Zinc supplementation protects the biological system and reduces cadmium-induced toxicity. This study aimed to determine whether zinc chloride (ZnCl2) could protect male mice with the damaged liver induced by cadmium chloride (CdCl2). The protective role of zinc chloride and expression of the metallothionein (MT), Ki-67, and Bcl-2 apoptotic proteins in hepatocytes were studied after subchronic exposure of mice to cadmium chloride for 21 days. Thirty male mice were randomly categorized into 6 groups (5 mice/group) as follows: a control group that did not receive any treatment, a group given ZnCl2 at 10 mg/kg alone, and two groups received ZnCl2 (10 mg/kg) in combination with CdCl2 at two concentrations (1.5 and 3 mg/kg), while the last two groups received CdCl2 alone at 1.5 and 3 mg/kg, respectively. Immunohistochemical examination revealed a decrease in Ki-67 expression in Kupffer and endothelial cells, which reflected cell proliferation downregulation accompanied by MT increased expression. However, the Bcl-2 was ameliorated and reduced to demonstrate an enhanced rate of necrosis rather than apoptosis. Furthermore, histopathological results showed significant alteration such as hepatocytes with a pyknotic nucleus, infiltration of inflammatory cells around the central vein, and the presence of many binucleated hepatocytes. Zinc chloride treatment resulted in histological and morphological improvements that were average in the expression of apoptosis proteins modifications induced by cadmium. Our findings revealed that the positive effects of zinc might be linked to the high metallothionein expression and enhanced cell proliferation. Furthermore, at low-dose exposure, cadmium-induced damage to cells could be more closely related to necrosis rather than apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.