Four series of some 4-substituted-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine derivatives 5a-f, 6a-f, 8a-f, and 9a-f were designed to be screened for their antitumor activity. All compounds were evaluated against breast (MCF-7) and lung (A-549) cell lines. Six compounds 5a, 5b, 6b, 6e, 9e, and 9f displaying activity against both cell lines were further estimated for their EGFR-TK inhibitory activity where they revealed 41-91% inhibition and compound 6b elicited the highest activity (91%). A docking study of these compounds into the ATP-binding site of EGFR-TK demonstrated their binding mode where H-bonding interaction with Met793 through N(1) of pyrimidine or N(2) of pyrazole was observed.
Several analogues of the general formulae 2-methoxy-9-substituted acridine and 6-chloro-2-methoxy-9-substituted acridine were synthesized and evaluated in vitro at 6.25 microg/mL against M. tuberculosis H37Rv. Compounds 15 and 17 showed potential antitubercular activity with 100% inhibition to the virulent mycobacterium.
HER2 kinase as a well-established target for breast cancer (BC) therapy is associated with aggressive clinical outcomes; thus, herein we present structural optimization for HER2-selective targeting. HER2 profiling of the developed derivatives demonstrated potent and selective inhibitions (IC 50 : 5.4−12 nM) compared to lapatinib (IC 50 : 95.5 nM). Favorably, 17d exhibited minimum off-target kinase activation. NCI-5-dose screening revealed broad-spectrum activities (GI 50 : 1.43−2.09 μM) and 17d had a remarkable selectivity toward BC. Our compounds revealed significant selective and potent antiproliferative activities (∼20-fold) against HER2+ (AU565, BT474) compared to HER2(−) cells. At 0.1 IC 50 , 15i, 17d, and 25b inhibited pERK1/2 and pAkt by immunoblotting. Furthermore, 17d demonstrated potent in vivo tumor regression against the BT474 xenograft model. Notably, a metastasis case was observed in the vehicle but not in the test mice groups. CD-1 mice metabolic stability assay revealed high stability and low intrinsic clearance of 17d (T 1/2 > 145 min and CL int(mic) < 9.6 mL/min/kg).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.