The wide adoption of multimedia service-capable mobile devices, the availability of better networks with higher bandwidths, and the availability of platforms offering digital content has led to an increasing popularity of multimedia streaming services. However, multimedia streaming services can be subject to different factors that affect the quality perceived by the users, such as service interruptions or quality oscillations due to changing network conditions, particularly in mobile networks. Dynamic Adaptive Streaming over HTTP (DASH), leverages the use of content-distribution networks and the capabilities of the multimedia devices to allow multimedia players to dynamically adapt the quality of the media streaming to the available bandwidth and the device characteristics. While many elements of DASH are standardized, the algorithms providing the dynamic adaptation of the streaming are not. The adaptation is often based on the estimation of the throughput or a buffer control mechanism. In this paper, we present a new throughput estimation adaptation algorithm based on a statistical method named Adaptive Forgetting Factor (AFF). Using this method, the adaptation logic is able to react appropriately to the different conditions of different types of networks. A set of experiments with different traffic profiles show that the proposed algorithm improves video quality performance in both wired and wireless environments.
Multimedia services over mobile networks present several challenges, such as ensuring a reliable delivery of multimedia content, avoiding undesired service disruptions, or reducing service latency. HTTP adaptive streaming addresses these problems for multimedia unicast services, but it is not efficient from the point of view of radio resource consumption. In Long-Term Evolution (LTE) networks, multimedia broadcast services are provided over a common radio channel using a combination of forward error correction and unicast error recovery techniques at the application level. This paper discusses how to avoid service disruptions and reduce service latency for LTE multimedia broadcast services by adding dynamic adaptation capabilities to the unicast error recovery process. The proposed solution provides a seamless mobile multimedia broadcasting without compromising the quality of the service perceived by the users.
Abstract-In a multicast video streaming service over a cellular network, the same content is sent to a mass audience using a common channel. However, users belonging to the same multicast channel perceive different characteristics of the radio channel. Moreover, in wireless environments, the radio interface introduces an important level of interference and noise, resulting in a high rate of transmission errors. Therefore, a protection of the information is needed at each receiver using Forward Error Correction (FEC) schemes, which allow the recovery of the lost packets sending redundancy together with the payload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.