Background The robust model cyanobacterium Synechocystis PCC 6803 is increasingly explored for its potential to use solar energy, water and atmospheric CO2 for the carbon-neutral production of terpenes, the high-value chemicals that can be used for the production of drugs, flavors, fragrances and biofuels. However, as terpenes are chemically diverse, it is extremely difficult to predict whether Synechocystis is a suitable chassis for the photosynthetic production of various terpenes or only a few of them. Results We have performed the first-time engineering and comparative analysis of the best-studied cyanobacterium Synechocystis PCC 6803 for the photosynthetic production of five chemically diverse high-value terpenes: two monoterpenes (C10H16) limonene (cyclic molecule) and pinene (bicyclic), and three sesquiterpenes (C15H24) bisabolene (cyclic), farnesene (linear) and santalene (cyclic). All terpene producers appeared to grow well and to be genetically stable, as shown by the absence of changes in their production levels during the 5–9-month periods of their sub-cultivation under photoautotrophic conditions). We also found that Synechocystis PCC 6803 can efficiently and stably produce farnesene and santalene, which had never been produced before by this model organism or any other cyanobacteria, respectively. Similar production levels were observed for cells growing on nitrate (the standard nitrogen source for cyanobacteria) or urea (cheaper than nitrate). Furthermore, higher levels of farnesene were produced by cloning the heterologous farnesene synthase gene in a RSF1010-derived replicating plasmid as compared to the well-used slr0168 neutral cloning site of the chromosome. Conclusions Altogether, the present results indicate that Synechocystis PCC 6803 is better suited to produce sesquiterpenes (particularly farnesene, the most highly produced terpene of this study) than monoterpenes (especially pinene).
Cyanobacteria, the largest phylum of prokaryotes, perform oxygenic photosynthesis and are regarded as the ancestors of the plant chloroplast and the purveyors of the oxygen and biomass that shaped the biosphere. Nowadays, cyanobacteria are attracting a growing interest in being able to use solar energy, H 2 O, CO 2 and minerals to produce biotechnologically interesting chemicals. This often requires the introduction and expression of heterologous genes encoding the enzymes that are not present in natural cyanobacteria. However, only a handful of model strains with a well-established genetic system are being studied so far, leaving the vast biodiversity of cyanobacteria poorly understood and exploited. In this study, we focused on the robust unicellular cyanobacterium Cyanothece PCC 7425 that has many interesting attributes, such as large cell size; capacity to fix atmospheric nitrogen (under anaerobiosis) and to grow not only on nitrate but also on urea (a frequent pollutant) as the sole nitrogen source; capacity to form CO 2-sequestrating intracellular calcium carbonate granules and to produce various biotechnologically interesting products. We demonstrate for the first time that RSF1010-derived plasmid vectors can be used for promoter analysis, as well as constitutive or temperature-controlled overproduction of proteins and analysis of their sub-cellular localization in Cyanothece PCC 7425. These findings are important because no gene manipulation system had been developed for Cyanothece PCC 7425, yet, handicapping its potential to serve as a model host. Furthermore, using this toolbox, we engineered Cyanothece PCC 7425 to produce the high-value terpene, limonene which
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.