The floating system is a successful strategy for producing baby leaf vegetables. Moreover, compost from agricultural and agri-food industry wastes is an alternative to peat that can be used as a component of growing media in this cultivation system. In this study, we experimented with three composts containing tomato (Solanum lycopersicum L.), leek (Allium porrum L.), grape (Vitis vinifera L.), and/or olive (Olea europaea L.) mill cake residues, which were used as the main component (75/25 volume/volume) of three growing media (GM1, GM2 and GM3) to evaluate their effect on the growth and quality of red baby leaf lettuce (Lactuca sativa L.). We used a commercial peat substrate as a control treatment (100% volume) and in mixtures (25% volume) with the composts. The plants were cultivated over two growing cycles, in spring and summer, and harvested twice in each cycle when the plants had four to five leaves. We found that the percentage of seed germination was significantly higher in plants grown in peat than in those grown in compost growing media. The yield was affected by the growing media in the summer cycle, and we obtained the highest value with GM1. Furthermore, the second cut was more productive than the first one for all the growing media in both cycles. The lettuce quality was also affected by the growing media. In general, the total phenolic content and antioxidant capacity in the leaves was higher in plants grown in the compost growing media, particularly in the second cut, but the nitrate content in the leaves was greater in some of the compost treatments compared with the peat treatment. In addition, an in vitro suppressive activity study demonstrated that the interaction between different fungi and bacteria observed through metagenomics analysis could contribute to the effectiveness of the compost in controlling Pythium irregulare. The use of compost as a component of the growing media in the production of baby leaf vegetables in a floating system does not only favor the crop yield and product quality, but also shows suppressive effects against P. irregulare.
We present here a new metabolomic methodology to predict embryo implantation ability in in vitro fertilization (IVF). In the present study we have included a total of 23 patients scheduled for IVF. Embryos were selected to be transferred by using morphological criteria on day 3 of in vitro culture. The relative amino acid concentrations in the embryo culture media were analyzed by HPLC-MS and HPLC-MS/MS. 1 H NMR metabolomic profiles were also obtained for the embryo culture media. Chemometric models were performed with SIMCA (soft independent modeling of class analogy) for samples from both, non-pregnancy and pregnancy cycles. The metabolic differences between the embryos, with pregnancy and nonpregnancy outcome, can be correlated with the relative amino acid concentrations and with 1 H NMR profiles. We used interval partial least square (iPLS) in order to identify the higher correlation between regions in the 1 H NMR spectra and the embryo implantation capability. The 1 H NMR regions with higher correlation are between 1.2 and 0.5 ppm, that included the signals for cholesterol backbone -C(18)H 3 , -CH 3 and CH 2 groups of triglycerides, cholesterol compounds and phospholipids. Our results can allow building a quick, non invasive, useful and feasible chemometric models in order to identify embryos with a high pregnancy rate and embryos unable to achieve successful pregnancies.
The aim of the present paper is to evaluate the changes of organic matter during the composting process of fresh winery and distillery residues (WDR) by means of classical and chemometric analysis of (13)C cross-polarization magic angle spinning (CPMAS) NMR and Fourier transform infrared (FT-IR) spectra. (13)C NMR spectroscopy displayed a preferential biodegradation of carbohydrates as well as an accumulation of aliphatic chains (cutin- and suberin-like substances). This preferential biodegradation of the organic fractions reduces the landfill emission potential. Although the composition of the input mixture strongly affects the shape of the infrared (IR) spectra, typical bands of components can be selected and used to follow the composting process; that is, changes in the relative absorbances of the band of nitrate (at 1384 cm(-1)) and in the band of carbohydrates (at 1037 cm(-1)) have been observed. In addition, different chemometric tools, such as partial least-squares (PLS), interval PLS (iPLS), backward iPLS (biPLS), and genetic algorithm (GA), have been used to find the most relevant spectral region during the composting process. Chemometric analysis based on the combined and sequential use of iPLS and GA has been revealed as a very powerful tool for the detection in samples of the most relevant spectral region related to the composting process. From the obtained results, it can be concluded that CPMAS (13)C NMR supported by FT-IR could provide information about the evolution and characteristics of the organic matter during the composting process in order to avoid contamination problems after its use as amendment in agriculture or after landfilling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.