Particle swarm optimisation (PSO) is an intelligent random search algorithm, and the key to success is to effectively balance between the exploration of the solution space in the early stages and the exploitation of the solution space in the late stages. This paper presents a new dynamic topology called "gradually increasing directed neighbourhoods (GIDN)" that provides an effective way to balance between exploration and exploitation in the entire iteration process. In our model, each particle begins with a small number of connections and there are many small isolated swarms that improve the exploration ability. At each iteration, we gradually add a number of new connections between particles which improves the ability of exploitation gradually. Furthermore, these connections among particles are created randomly and have directions. We formalise this topology using random graph representations. Experiments are conducted on 31 benchmark test functions to validate our proposed topology. The results show that the PSO with GIDN performs much better than a number of the state of the art algorithms on almost all of the 31 functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.