The biomechanisms that govern the response of chondrocytes to mechanical stimuli are poorly understood. In this study, a series of in vitro tests are performed, in which single chondrocytes are subjected to shear deformation by a horizontally moving probe. Dramatically different probe force -indentation curves are obtained for untreated cells and for cells in which the actin cytoskeleton has been disrupted. Untreated cells exhibit a rapid increase in force upon probe contact followed by yielding behaviour. Cells in which the contractile actin cytoskeleton was removed exhibit a linear force -indentation response. In order to investigate the mechanisms underlying this behaviour, a three-dimensional active modelling framework incorporating stress fibre (SF) remodelling and contractility is used to simulate the in vitro tests. Simulations reveal that the characteristic force -indentation curve observed for untreated chondrocytes occurs as a result of two factors: (i) yielding of SFs due to stretching of the cytoplasm near the probe and (ii) dissociation of SFs due to reduced cytoplasm tension at the front of the cell. In contrast, a passive hyperelastic model predicts a linear force -indentation curve similar to that observed for cells in which the actin cytoskeleton has been disrupted. This combined modelling -experimental study offers a novel insight into the role of the active contractility and remodelling of the actin cytoskeleton in the response of chondrocytes to mechanical loading.
Publication InformationReynolds, NH,Ronan, W,Dowling, EP,Owens, P,McMeeking, RM,McGarry, JP (2014) 'On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells '. Biomaterials,.
Articular chondrocytes experience a variety of mechanical stimuli during daily activity. One such stimulus, direct shear, is known to affect chondrocyte homeostasis and induce catabolic or anabolic pathways. Understanding how single chondrocytes respond biomechanically and morphologically to various levels of applied shear is an important first step toward elucidating tissue level responses and disease etiology. To this end, a novel videocapture method was developed in this study to examine the effect of direct shear on single chondrocytes, applied via the controlled lateral displacement of a shearing probe. Through this approach, precise force and deformation measurements could be obtained during the shear event, as well as clear pictures of the initial cell-to-probe contact configuration. To further study the non-uniform shear characteristics of single chondrocytes, the probe was positioned in three different placement ranges along the cell height. It was observed that the apparent shear modulus of single chondrocytes decreased as the probe transitioned from being close to the cell base (4.1 +/- 1.3 kPa), to the middle of the cell (2.6 +/- 1.1 kPa), and then near its top (1.7 +/- 0.8 kPa). In addition, cells experienced the greatest peak forward displacement (approximately 30% of their initial diameter) when the probe was placed low, near the base. Forward cell movement during shear, regardless of its magnitude, continued until it reached a plateau at ~35% shear strain for all probe positions, suggesting that focal adhesions become activated at this shear level to firmly adhere the cell to its substrate. Based on intracellular staining, the observed height-specific variation in cell shear stiffness and plateau in forward cell movement appeared to be due to a rearrangement of focal adhesions and actin at higher shear strains. Understanding the fundamental mechanisms at play during shear of single cells will help elucidate potential treatments for chondrocyte pathology and loading regimens related to cartilage health and disease.
Cell adhesion is a key phenomenon that affects fundamental cellular processes such as morphology, migration, and differentiation. In the current study, an active modelling framework incorporating actin cytoskeleton remodelling and contractility, combined with a cohesive zone model to simulate debonding at the cell-substrate interface, is implemented to investigate the increased resistance to detachment of highly spread chondrocytes from a substrate, as observed experimentally by Huang et al. (J. Orthop. Res. 21: 88-95, 2003). 3D finite element meshes of the round and spread cell geometries with the same material properties are created. It is demonstrated that spread cells with a flattened morphology and a larger adhesion area have a more highly developed actin cytoskeleton than rounded cells. Rounded cells provide less support for tension generated by the actin cytoskeleton; hence, a high level of dissociation is predicted. It is revealed that the more highly developed active contractile actin cytoskeleton of the spread cell increases the resistance to shear deformation, and subsequently increases the shear detachment force. These findings provide new insight into the link between cell geometry, cell contractility, and cell-substrate detachment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.