The purpose of this study was to investigate MRI features of triple-negative breast cancer (TNBC) compared with non-TNBC, to predict histopathological results. In the study, 26 patients with TNBC and 24 with non-TNBC who underwent multiparametric MRI of the breast on a 3 T magnet over a 10-months period were retrospectively recruited. MR imaging sets were evaluated by two experienced breast radiologists in consensus and classified according to the 2013 American College of Radiology (ACR) BI-RADS lexicon. The comparison between the two groups was performed using the Chi-square test and followed by logistic regression analyses. We found that 92% of tumors presented as mass enhancements (p = 0.192). 41.7% of TNBC and 86.4% of non-TNBC had irregular shape (p = 0.005); 58.3% of TNBC showed circumscribed margins, compared to 9.1% of non-TNBC masses (p = 0.001); 75% of TNBC and 9.1% of non-TNBC showed rim enhancement (p < 0.001). Intralesional necrosis was significantly associated with TNBC (p = 0.016). Rim enhancement and intralesional necrosis risulted to be positive predictors at univariate analysis (OR = 29.86, and 8.10, respectively) and the multivariate analysis confirmed that rim enhancement is independently associated with TNBC (OR = 33.08). The mean ADC values were significantly higher for TNBC (p = 0.011). In conclusion, TNBC is associated with specific MRI features that can be possible predictors of pathological results, with a consequent prognostic value.
Introduction: Many studies reported that East Asian's prevalence of radiographic OVF is similar to that of Caucasian. Since elderly Chinese's osteoporotic hip fracture prevalence is half (or less than half) of that of their age-match Caucasians, we hypothesize that elderly Chinese's OVF prevalence could be only half, or even less than half, of that of their agematch Caucasians.Materials: Age-matched elderly women's radiographs (T4-L5) were from two OVF population-based epidemiological studies conducted in Hong Kong (n=200) and in Rome (n=200). The study subjects had a mean age of 74.1 yrs (range: 65-87 yrs). All radiographs were double read by one reader in Hong Kong and one reader in Rome. Radiological osteoporotic vertebral deformity (ROVD) classification included no ROVD (grade 0), and ROVDs with <20%, 20~25%, ≥25%~1/3, ≥1/3~40%, ≥40%~2/3, and ≥2/3 height loss (grade 1~6). Spinal deformity index (SDI) was calculated with each vertebra assigned a score of 0, 0.5, 1, 1.5, 2, 2.5 and 3 for no ROVD or ROVDs grade 1~6.Results: 77 (38.5%) Chinese subjects and 123 Italian subjects (61.5%) had ROVD respectively (p<0.0001). ROVDs in Italian subjects tended to be more severe (total and mean SDI: 454.5 and 3.71 for Italian, and 212 and 2.72 for Chinese, p<0.05), more likely to be multiple (p<0.001), more likely to have severe and collapsed grades (p<0.001). The slope of the relationship between age vs. SDI was steeper for the Italian subjects than for the Chinese subjects, suggesting aging Italian subjects developed faster for the prevalence of ROVD and their severity. A trend suggested earlier onset of ROVD among Italian. Conclusion:Compared with elderly Italian women, elderly Chinese women have much lower prevalence of OVF. OVF in Chinese women tend to be less severe and less likely to have multiple fractures and less likely to collapse.
ObjectivesTo evaluate the accuracy in lesion detection and size assessment of Unenhanced Magnetic Resonance Imaging combined with Digital Breast Tomosynthesis (UE-MRI+DBT) and Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI), in women with known breast cancer.MethodsA retrospective analysis was performed on 84 patients with histological diagnosis of breast cancer, who underwent MRI on a 3T scanner and DBT over 2018-2019, in our Institution. Two radiologists, with 15 and 7 years of experience in breast imaging respectively, reviewed DCE-MRI and UE-MRI (including DWI and T2-w) + DBT images in separate reading sections, unaware of the final histological examination. DCE-MRI and UE-MRI+DBT sensitivity, positive predictive value (PPV) and accuracy were calculated, using histology as the gold standard. Spearman correlation and regression analyses were performed to evaluate lesion size agreement between DCE-MRI vs Histology, UE-MRI+DBT vs Histology, and DCE-MRI vs UE-MRI+DBT. Inter-reader agreement was evaluated using Cohen’s κ coefficient. McNemar test was used to identify differences in terms of detection rate between the two methodological approaches. Spearman’s correlation analysis was also performed to evaluate the correlation between ADC values and histological features.Results109 lesions were confirmed on histological examination. DCE-MRI showed high sensitivity (100% Reader 1, 98% Reader 2), good PPV (89% Reader 1, 90% Reader 2) and accuracy (90% for both readers). UE-MRI+DBT showed 97% sensitivity, 91% PPV and 92% accuracy, for both readers. Lesion size Spearman coefficient were 0.94 (Reader 1) and 0.91 (Reader 2) for DCE-MRI vs Histology; 0.91 (Reader 1) and 0.90 (Reader 2) for UE-MRI+DBT vs Histology (p-value <0.001). DCE-MRI vs UE-MRI+DBT regression coefficient was 0.96 for Reader 1 and 0.94 for Reader 2. Inter-reader agreement was 0.79 for DCE-MRI and 0.94 for UE-MRI+DBT. McNemar test did not show a statistically significant difference between DCE-MRI and UE-MRI+DBT (McNemar test p-value >0.05). Spearman analyses showed an inverse correlation between ADC values and histological grade (p-value <0.001).ConclusionsDCE-MRI was the most sensitive imaging technique in breast cancer preoperative staging. However, UE-MRI+DBT demonstrated good sensitivity and accuracy in lesion detection and tumor size assessment. Thus, UE-MRI could be a valid alternative when patients have already performed DBT.
Background Breast cancer (BC) includes different pathological and molecular subtypes. This study aimed to investigate whether multiparametric magnetic resonance imaging (mpMRI) could reliably predict the molecular status of BC, comparing mpMRI features with pathological and immunohistochemical results. Methods This retrospective study included 156 patients with an ultrasound-guided biopsy-proven BC, who underwent breast mpMRI (including diffusion-weighted imaging) on a 3-T scanner from 2017 to 2020. Histopathological analyses were performed on the surgical specimens. Kolmogorov–Smirnov Z, χ2, and univariate and multivariate logistic regression analyses were performed. Results Fifteen patients were affected with ductal carcinoma in situ, 122 by invasive carcinoma of no special type, and 19 with invasive lobular carcinoma. Out of a total of 141 invasive cancers, 45 were luminal A-like, 54 luminal B-like, 5 human epidermal growth factor receptor 2 (HER2) positive, and 37 triple negative. The regression analyses showed that size < 2 cm predicted luminal A-like status (p = 0.025), while rim enhancement (p < 0.001), intralesional necrosis (p = 0.001), peritumoural oedema (p < 0.001), and axillary adenopathies (p = 0.012) were negative predictors. Oppositely, round shape (p = 0.001), rim enhancement (p < 0.001), intralesional necrosis (p < 0.001), and peritumoural oedema (p < 0.001) predicted triple-negative status. Conclusions mpMRI has been confirmed to be a valid noninvasive predictor of BC subtypes, especially luminal A and triple negative. Considering the central role of pathology in BC diagnosis and immunohistochemical profiling in the current precision medicine era, a detailed radiologic-pathologic correlation seems vital to properly evaluate BC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.