Pultrusion is a technological process in which fibers impregnated with resin move through the heated die and solidify into a composite profile with a constant cross section, as in the metallic die. The effectiveness and productivity of conventional pultrusion processes, preserving the quality of pultruded profiles, could be improved by process optimization or by the application of new, effective heating sources instead of electrical resistances with high heat losses. Due to the large dimension of the numerical problem and multiple iterations applied for the solution of government equations, an optimization methodology was developed, using the method of experimental design and the response surface technique. To develop microwave-assisted pultrusion processes, as well as pultrusion tooling design and process control, new effective electromagnetic-thermo-chemical finite element models and algorithms were developed by using general-purpose finite element software that results in considerable savings in development time and costs and makes available various modeling features of the finite element packages. The effectiveness and productivity of the optimized conventional pultrusion processes and the developed microwave-assisted pultrusion processes are estimated in comparison with the real pultrusion processes used in laboratory and industrial shops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.