Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.
Fine root acclimation to different environmental conditions is crucial for growth and sustainability of forest trees. Relatively small changes in fine root standing biomass (FRB), morphology or mycorrhizal symbiosis may result in a large change in forest carbon, nutrient and water cycles. We elucidated the changes in fine root traits and associated ectomycorrhizal (EcM) fungi in 12 Norway spruce stands across a climatic and N deposition gradient from subarctic-boreal to temperate regions in Europe (68°N-48°N). We analysed the standing FRB and the ectomycorrhizal root tip biomass (EcMB, g m À2 ) simultaneously with measurements of the EcM root morphological traits (e.g. mean root length, root tissue density (RTD), N% in EcM roots) and frequency of dominating EcM fungi in different stands in relation to climate, soil and site characteristics. Latitude and N deposition explained the greatest proportion of variation in fine root traits. EcMB per stand basal area (BA) increased exponentially with latitude: by about 12.7 kg m À2 with an increase of 10°latitude from southern Germany to Estonia and southern Finland and by about 44.7 kg m À2 with next latitudinal 10°from southern to northern Finland. Boreal Norway spruce forests had 4.5 to 11 times more EcM root tips per stand BA, and the tips were 2.1 times longer, with 1.5 times higher RTD and about 1/3 lower N concentration. There was 19% higher proportion of root tips colonized by long-distance exploration type forming EcM fungi in the southern forests indicating importance of EcM symbiont foraging strategy in fine root nutrient acquisition. In the boreal zone, we predict ca. 50% decrease in EcMB per stand BA with an increase of 2°C annual mean temperature. Different fine root foraging strategies in boreal and temperate forests highlight the importance of complex studies on respective regulatory mechanisms in changing climate.
The soil organic carbon (SOC) stocks (Mg ha -1 ) of automorphic mineral (9 soil groups), hydromorphic mineral (7), and lowland organic soils (4) are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil) layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km 2 ), a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg) in the epipedon layer (O, H, and A horizons) and 35.1% in the subsoil (B and E horizons). The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.
Litter decomposition is a key process that drives carbon and nutrient cycles in forest soils. The decomposition of five different substrate types was analyzed in hemiboreal coniferous forests, focusing on the mass loss and nutrient (N, P, and K) release of fine roots (FR) and needle litter in relation to the initial substrate and soil chemistry. A litterbag incubation experiment with site-specific FR and needle litter and three standard substrates (green and rooibos tea, α-cellulose) was carried out in four Norway spruce and four Scots pine-dominated stands in Estonia. Substrate type was the primary driver of mass loss and the decay rate of different substrates did not depend on the dominant tree species of the studied stands. Alpha-cellulose lost 98 ± 1% of the mass in 2-years, while the FR mass loss was on average 23 ± 2% after 3-years of decomposition. The FR decomposition rate could be predicted using a corresponding model of green tea, although the rate of FR decomposition is approximately five times lower than the rate of green tea in the first 3-years. The annual decomposition rate of the needle litter is rather constant in hemiboreal coniferous forests in the first 3 years. The initial substrate of fine roots or needle litter and soil chemistry jointly had a significant effect on mass loss in the later stage of decomposition. The critical N concentration for N release was lower for pine FR and needle litter (0.9–1.3% and 0.7–1.1%) compared to spruce (1.2–1.6% and 1.5–1.9%, respectively). The release rate of K depended on the initial K of substrate, while the release of N and P was significantly related to the initial C:N and N:P ratios, respectively. The results show the central role of soil and substrate initial chemistry in the decomposition of fine roots and needle litter across hemiboreal forests, especially at later stage (after 2 years) of decomposition. The slower decomposition and higher retention of N in the fine roots relative to needle litter suggests that fine roots have a substantial role in the carbon and nitrogen accumulation in boreal and hemiboreal forest ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.