Linear chain thiocyanate complexes of M(NCS)(2)(OCMe(2))(2) (M = Fe, Mn, Cr) composition have been prepared and structurally, chemically, and magnetically characterized. Fe(NCS)(2)(OCMe(2))(2) exhibits metamagnetic-like behavior, and orders as an antiferromagnet at 6 K. The Mn and Cr compounds are antiferromagnets with T(c) of 30 and 50 K, respectively, with J/k(B) = -3.5 (-2.4 cm(-1)) and -9.9 K (-6.9 cm(-1)), respectively, when fit to one-dimensional (1-D) Fisher chain model (H = -2JS(i)·S(j)). Co(NCS)(2) was prepared by a new synthetic route, and powder diffraction was used to determine its structure to be a two-dimensional (2-D) layer with μ(N,S,S)-NCS motif, and it is an antiferromagnet (T(c) = 22 K; θ = -33 K for T > 25 K). M(NCS)(2)(OCMe(2))(2) (M = Fe, Mn) and Co(NCS)(2) react with (NBu(4))(TCNE) in dichloromethane to form M(TCNE)[C(4)(CN)(8)](1/2), and in acetone to form M[C(4)(CN)(8)](OCMe(2))(2) (M = Fe, Mn, Co). These materials possess μ(4)-[C(4)(CN)(8)](2-) that form 2-D layered structural motifs, which exhibit weak antiferromagnetic coupling. Co(TCNE)[C(4)(CN)(8)](1/2) behaves as a paramagnet with strong antiferromagnetic coupling (θ = -50 K).
The reaction of first row transition M(II) ions with KSCN in various solvents form tetrahedral (NMe4)2[M(II)(NCS)4] (M = Fe, Co), octahedral trans-M(II)(NCS)2(Sol)4 (M = Fe, V, Ni; Sol = MeCN, THF), and K4[M(II)(NCS)6] (M = V, Ni). The reaction of M(NCS)2(OCMe2)2 (M = Cr, Mn) in MeCN and [Co(NCMe)6](BF4)2 and KSCN in acetone and after diffusion of diethyl ether form M(NCS)2(Sol)2 that structurally differ as they form one-dimensional (1-D) (M = Co; Sol = THF), two-dimensional (2-D) (M = Mn; Sol = MeCN), and three-dimensional (3-D) (M = Cr; Sol = MeCN) extended structures. 1-D Co(NCS)2(THF)2 has trans-THFs, while the acetonitriles have a cis geometry for 2- and 3-D M(NCS)2(NCMe)2 (M = Cr, Mn). 2-D Mn(NCS)2(NCMe)2 is best described as Mn(II)(μ(N,N)-NCS)(μ(N,S)-NCS)(NCMe)2 [= Mn2(μ(N,N)-NCS)2(μ(N,S)-NCS)2(NCMe)4] with the latter μ(N,S)-NCS providing the 2-D connectivity. In addition, the reaction of Fe(NCS)2(OCMe2)2 and 7,7,8,8-tetracyanoquino-p-dimethane (TCNQ) forms 2-D structured Fe(II)(NCS)2TCNQ. The magnetic behavior of 1-D Co(NCS)2(THF)2 can be modeled by a 1-D Fisher expression (H = -2JS(i)·S(j)) with g = 2.4 and J/kB = 0.68 K (0.47 cm(-1)) and exhibit weak ferromagnetic coupling. Cr(NCS)2(NCMe)2 and Fe(II)(NCS)2TCNQ magnetically order as antiferromagnets with Tc's of 37 and 29 K, respectively, while Mn(NCS)2(NCMe)2 exhibits strong antiferromagnetic coupling. M(NCS)2(THF)4 and K4[M(NCS)6] (M = V, Ni) are paramagnets with weak coupling between the octahedral metal centers.
A facile method for synthesizing conjugated bis(fulvenes) demonstrates tailorable optical band gaps and serves as a model dye system for new organic electronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.