Supercooled droplet freezing on surfaces occurs frequently in nature and industry, often adversely affecting the efficiency and reliability of technological processes. The ability of superhydrophobic surfaces to rapidly shed water and reduce ice adhesion make them promising candidates for resistance to icing. However, the effect of supercooled droplet freezing—with its inherent rapid local heating and explosive vaporization—on the evolution of droplet–substrate interactions, and the resulting implications for the design of icephobic surfaces, are little explored. Here we investigate the freezing of supercooled droplets resting on engineered textured surfaces. On the basis of investigations in which freezing is induced by evacuation of the atmosphere, we determine the surface properties required to promote ice self-expulsion and, simultaneously, identify two mechanisms through which repellency falters. We elucidate these outcomes by balancing (anti-)wetting surface forces with those triggered by recalescent freezing phenomena and demonstrate rationally designed textures to promote ice expulsion. Finally, we consider the complementary case of freezing at atmospheric pressure and subzero temperature, where we observe bottom-up ice suffusion within the surface texture. We then assemble a rational framework for the phenomenology of ice adhesion of supercooled droplets throughout freezing, informing ice-repellent surface design across the phase diagram.
Gas-encapsulated droplets have recently been promoted as an effective technique for fluid transport. Shock waves are herein proposed as an instant release mechanism for the encapsulated fluid, which subsequently discharges into the surroundings. This release process relies on the intricate bubble dynamics and droplet response to the shock driving, which are discovered through numerical and theoretical investigations. The key factors involved in the process, such as the complex shock pattern, pressure amplification, and the generation of a sheet jet cascade, are characterized. These observations are further supported by analytical models derived to predict the water hammer pressure, sheet jet velocity, and droplet drift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.