Asymptotic factorizations for the small-ball probability (SmBP) of a Hilbert valued random element X are rigorously established and discussed. In particular, given the first d principal components (PCs) and as the radius ε of the ball tends to zero, the SmBP is asymptotically proportional to (a) the joint density of the first d PCs, (b) the volume of the d-dimensional ball with radius ε, and (c) a correction factor weighting the use of a truncated version of the process expansion. Moreover, under suitable assumptions on the spectrum of the covariance operator of X and as d diverges to infinity when ε vanishes, some simplifications occur. In particular, the SmBP factorizes asymptotically as the product of the joint density of the first d PCs and a pure volume parameter. All the provided factorizations allow to define a surrogate intensity of the SmBP that, in some cases, leads to a genuine intensity. To operationalize the stated results, a non-parametric estimator for the surrogate intensity is introduced and it is proved that the use of estimated PCs, instead of the true ones, does not affect the rate of convergence. Finally, as an illustration, simulations in controlled frameworks are provided.
Summary. The paper considers a particular family of set-valued stochastic processes modeling birth-and-growth processes. The proposed setting allows us to investigate the nucleation and the growth processes. A decomposition theorem is established to characterize the nucleation and the growth. As a consequence, different consistent set-valued estimators are studied for growth process. Moreover, the nucleation process is studied via the hitting function, and a consistent estimator of the nucleation hitting function is derived.
An unsupervised and a supervised classification approaches for Hilbert random curves are studied. Both rest on the use of a surrogate of the probability density which is defined, in a distribution-free mixture context, from an asymptotic factorization of the small-ball probability. That surrogate density is estimated by a kernel approach from the principal components of the data. The focus is on the illustration of the classification algorithms and the computational implications, with particular attention to the tuning of the parameters involved. Some asymptotic results are sketched. Applications on simulated and real datasets show how the proposed methods work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.