Photovoltaic (PV) energy, representing a renewable source of energy, plays a key role in the reduction of greenhouse gas emissions and the achievement of a sustainable mix of energy generation. To achieve the maximum solar energy harvest, PV power systems require the implementation of Maximum Power Point Tracking (MPPT). Traditional MPPT controllers, such as P&O, are easy to implement, but they are by nature slow and oscillate around the MPP losing efficiency. This work presents a Reinforcement learning (RL)-based control to increase the speed and the efficiency of the controller. Deep Deterministic Policy Gradient (DDPG), the selected RL algorithm, works with continuous actions and space state to achieve a stable output at MPP. A Digital Twin (DT) enables simulation training, which accelerates the process and allows it to operate independent of weather conditions. In addition, we use the maximum power achieved in the DT to adjust the reward function, making the training more efficient. The RL control is compared with a traditional P&O controller to validate the speed and efficiency increase both in simulations and real implementations. The results show an improvement of 10.45% in total power output and a settling time 24.54 times faster in simulations. Moreover, in real-time tests, an improvement of 51.45% in total power output and a 0.25 s settling time of the DDPG compared with 4.26 s of the P&O is obtained.
Wireless technologies are increasingly used in industrial applications. These technologies reduce cabling, which is costly and troublesome, and introduce several benefits for their application in terms of flexibility to modify the layout of the nodes and scaling of the number of connected devices. They may also introduce new functionalities since they ease the connections to mobile devices or parts. Although they have some drawbacks, they are increasingly accepted in industrial applications, especially for monitoring and supervision tasks. Recently, they are starting to be accepted even for time-critical tasks, for example, in closed-loop control systems involving slow dynamic processes. However, wireless technologies have been evolving very quickly during the last few years, since several relevant technologies are available in the market. For this reason, it may become difficult to select the best alternative. This perspective article intends to guide application designers to choose the most appropriate technology in each case. For this purpose, this article discusses the most relevant wireless technologies in the industry and shows different examples of applications.
Piezoelectric actuators (PEA) are high-precision devices used in applications requiring micrometric displacements. However, PEAs present non-linearity phenomena that introduce drawbacks at high precision applications. One of these phenomena is hysteresis, which considerably reduces their performance. The introduction of appropriate control strategies may improve the accuracy of the PEAs. This paper presents a high precision control scheme to be used at PEAs based on the model-based predictive control (MPC) scheme. In this work, the model used to feed the MPC controller has been achieved by means of artificial neural networks (ANN). This approach simplifies the obtaining of the model, since the achievement of a precise mathematical model that reproduces the dynamics of the PEA is a complex task. The presented approach has been embedded over the dSPACE control platform and has been tested over a commercial PEA, supplied by Thorlabs, conducting experiments to demonstrate improvements of the MPC. In addition, the results of the MPC controller have been compared with a proportional-integral-derivative (PID) controller. The experimental results show that the MPC control strategy achieves higher accuracy at high precision PEA applications such as tracking periodic reference signals and sudden reference change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.