During the last few decades, diamond-like carbon (DLC) coatings were widely used for tribological applications, being an effective tool for improving the performance and the useful life of different machining tools. Despite its excellent properties, among which stand out a high hardness, a very low friction coefficient, and even an excellent wear resistance, one of the main drawbacks which limits its corresponding industrial applicability is the resultant adhesion in comparison with other commercially available deposition techniques. In this work, it is reported the tribological results of a scratch test, wear resistance, and nanoindentation of ta-C and WC:C DLC coatings deposited by means of a novel high-power impulse magnetron sputtering (HiPIMS) technology with “positive pulses”. The coatings were deposited on 1.2379 tool steel which is of a high interest due to its great and wide industrial applicability. Finally, experimental results showed a considerable improvement in the tribological properties such as wear resistance and adhesion of both types of DLC coatings. In addition, it was also observed that the role of doping with W enables a significant enhancement on the adhesion for extremely high critical loads in the scratch tests.
Diamond-like carbon (DLC) coatings are very interesting due to their extraordinary properties; their excellent wear resistance, very low friction coefficient, great hardness, high elastic modulus or biocompatibility can be highlighted, as can their multifunctionality. Because of this, over recent decades they have been widely used in tribological applications, improving the performance and the useful life of machining tools in an effective way. However, these coatings have a disadvantage compared to other coatings deposited by commercially available techniques—their resultant adhesion is worse than that of other techniques and limits their industrial applications. In this work, tribological results of a scratch test, wear resistance and nanoindentation of tetrahedral amorphous carbon (ta-C) and tungsten carbide:carbon (WC:C) DLC coatings deposited by means of novel high-power impulse magnetron sputtering (HiPIMS) technology with positive pulses are reported. The coatings were deposited in three different tools steels: K360, vanadis 4 and vancron. These tools’ steels are very interesting because of their great and wide industrial applicability. Experimental results showed excellent tribological properties, such as resistance to wear or adhesion, in the two types of DLC coatings.
The automotive industry has undergone significant advancements and changes over time, resulting in the use of more complex parts in modern vehicles. As a consequence, the parts used in the manufacturing process are subject to higher stress levels, which reduce their service life. To mitigate this issue, surface treatments can be applied to improve the mechanical properties of the tools. In this study, we examined the impact of surface treatments on reducing tool stress during a cold forming process. The process involved reducing the thickness of a sheet from 6 mm to 2.5 mm, which generated high stresses in the tooling. We used finite element stress calculations to analyze the process and found that by reducing the friction coefficient to 0.1, tool stresses can be reduced by 20%, leading to an increase in tool life. Moreover, the press force and tool wear were also reduced by 18%. To validate the theoretical calculations, we performed field tests in a real manufacturing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.