In this paper, a multi-physics computational tool has been developed to accurately model and build high performance ultra-fast actuators. The research methodology is based on a finite element method model coupled with a circuit model. Electromagnetic, thermal, mechanical, and algebraic equations are implemented in Comsol Multiphysics and verified with laboratory experiments of a built prototype. A simplified model is preferred as long as its underlying assumptions hold. However, in the presence of large current and force densities, nonlinearities such as deformations may occur. Such phenomena can only be captured by the use of the developed comprehensive multi-physics simulation model. Although this model is computationally demanding, it was shown to have an accuracy of at least 95% when compared with experiments.
When large structures such as residential compounds or public buildings are under the influence of extremely low frequency (ELF) magnetic fields, such as the one generated by a system of railways fed by 16.67 Hz, standard methods of designing shielding structures by numerical methods usually fail. The latter can be explained by the difficulty posed in the computing process by the large aspect ratios involved due to thin layers of metal (a few millimetres or centimetres) in contrast to the large dimensions of the affected structure (several tens of meters). In some cases one has to utilize special approximations such as surface conductivity, which are not easy to handle when the designed shielding structure is clearly three -dimensional. Other alternatives such as experimentation in situ are very costly. Here, a new technique is presented of mitigating the field by using three-dimensional propagation of induced currents optimizing the field reduction factors and minimizing the cost of shielding material. The particular designing method is a hybrid of numerical simulations combined with lab experimentation using scaled models of the large structure. The method is rather cost-effective and flexible as various designs can be easily tested. Results are presented in the form of magnetic field values, at various locations in the buildings, before and after this mitigation technique is applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.