Today's vehicles are becoming cyber-physical systems that do not only communicate with other vehicles but also gather various information from hundreds of sensors within them. These developments help create smart and connected (e.g., self-driving) vehicles that will introduce significant information to drivers, manufactures, insurance companies and maintenance service providers for various applications. One such application that is becoming crucial with the introduction of self-driving cars is the forensic analysis for traffic accidents. The utilization of vehicle related data can be instrumental in post-accident scenarios to find out the faulty party, particularly for self-driving vehicles. With the opportunity of being able to access various information on the cars, we propose a permissioned blockchain framework among the various elements involved to manage the collected vehicle related data. Specifically, we first integrate Vehicular Public Key Management (VPKI) to the proposed blockchain to provide membership establishment and privacy. Next, we design a fragmented ledger that will store detailed data related to vehicle such as maintenance information/history, car diagnosis reports, etc. The proposed forensic framework enables trustless, traceable and privacy-aware post-accident analysis with minimal storage and processing overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.