Moth's eye inspired multiscale ommatidial arrays offer multifunctional properties of great significance in optoelectronic devices. However, a major challenge remains in fabricating these arrays on large-area substrates using a simple and scalable technique. Here we present the fabrication of these multiscale ommatidial arrays over large areas by a distinct approach called sacrificial layer mediated nanoimprinting, which involves nanoimprinting aided by a sacrificial layer. The fabricated arrays exhibited excellent pattern uniformity over the entire patterned area. Optimum dimensions of the multiscale ommatidial arrays determined by the finite-difference time domain simulations served as the design parameters for replicating the arrays on glass. A broadband suppression of reflectance to a minimum of ∼1.4% and omnidirectional antireflection for highly oblique angles of incidence up to 70° were achieved. In addition, superhydrophobicity and superior antifogging characteristics enabled the retention of optical properties even in wet and humid conditions, suggesting reliable optical performance in practical outdoor conditions. We anticipate that these properties could potentially enhance the performance of optoelectronic devices and minimize the influence of in-service conditions. Additionally, as our technique is solely nanoimprinting-based, it may enable scalable and high-throughput fabrication of multiscale ommatidial arrays.
We propose a quarter-wave plate based on nanoslits and analyze it using a semianalytical theory and simulations. The device comprises two nanoslits arranged perpendicular to one another where the phases of the fields transmitted by the nanoslits differ by λ/4. In this way, the polarization state of the incident light can be changed from linear to circular or vice versa. The plasmonic nanoslit wave plate is thin and has a subwavelength lateral extent. We show that the predictions for the phase shift obtained from a semianalytical model are in very good agreement with simulations by the finite difference time domain method.
Abstract-We present a three-dimensional finite difference time domain (FDTD) method on graphics processing unit (GPU) for plasmonics applications. For the simulation of plasmonics devices, the Lorentz-Drude (LD) dispersive model is incorporated into Maxwell equations, while the auxiliary differential equation (ADE) technique is applied to the LD model. Our numerical experiments based on typical domain sizes as well as plasmonics environment demonstrate that our implementation of the FDTD method on GPU offers significant speed up as compared to the traditional CPU implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.