Noonan syndrome (NS) is a common genetic syndrome associated with gain of function variants in genes in the Ras/MAPK pathway. The phenotype of NS has been well characterized in populations of European descent with less attention given to other groups. In this study, individuals from diverse populations with Noonan syndrome were evaluated clinically and by facial analysis technology. Clinical data and images from 125 individuals with NS were obtained from 20 countries with an average age of 8 years and female composition of 46%. Individuals were grouped into categories of African descent (African), Asian, Latin American and additional/other. Across these different population groups, NS was phenotypically similar with only 2 of 21 clinical elements showing a statistically significant difference. The most common clinical characteristics found in all population groups included widely spaced eyes and low-set ears in 80% or greater of participants, short stature in more than 70%, and pulmonary stenosis in roughly half of study individuals. Using facial analysis technology, we compared 161 Caucasian, African, Asian, and Latin American individuals with NS with 161 gender and age matched controls and found that sensitivity was equal to or greater than 94% for all groups, and specificity was equal to or greater than 90%. In summary, we present consistent clinical findings from global populations with NS and additionally demonstrate how facial analysis technology can support clinicians in making accurate NS diagnoses. This work will assist in earlier detection and in increasing recognition of NS throughout the world.
BackgroundFloating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome.Methods and resultsClinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations.ConclusionsThis large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.
Williams-Beuren syndrome (WBS) is a common microdeletion syndrome characterized by a 1.5Mb deletion in 7q11.23. The phenotype of WBS has been well described in populations of European descent with not as much attention given to other ethnicities. In this study, individuals with WBS from diverse populations were assessed clinically and by facial analysis technology. Clinical data and images from 137 individuals with WBS were found in 19 countries with an average age of 11 years and female gender of 45%. The most common clinical phenotype elements were periorbital fullness and intellectual disability which were present in greater than 90% of our cohort. Additionally, 75% or greater of all individuals with WBS had malar flattening, long philtrum, wide mouth, and small jaw. Using facial analysis technology, we compared 286 Asian, African, Caucasian, and Latin American individuals with WBS with 286 gender and age matched controls and found that the accuracy to discriminate between WBS and controls was 0.90 when the entire cohort was evaluated concurrently. The test accuracy of the facial recognition technology increased significantly when the cohort was analyzed by specific ethnic population (P-value < 0.001 for all comparisons), with accuracies for Caucasian, African, Asian, and Latin American groups of 0.92, 0.96, 0.92, and 0.93, respectively. In summary, we present consistent clinical findings from global populations with WBS and demonstrate how facial analysis technology can support clinicians in making accurate WBS diagnoses.
Cornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in 5 genes-NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies. This study looked at individuals from diverse populations with both clinical and molecularly confirmed diagnoses of CdLS by facial analysis technology. Clinical data and images from 246 individuals with CdLS were obtained from 15 countries. This cohort included 49% female patients and ages ranged from infancy to 37 years. Individuals were grouped into ancestry categories of African descent, Asian, Latin American, Middle Eastern, and Caucasian. Across these populations, 14 features showed a statistically significant difference. The most common facial features found in all ancestry groups included synophrys, short nose with anteverted nares, and a long philtrum with thin vermillion of the upper lip. Using facial analysis technology we compared 246 individuals with CdLS to 246 gender/age matched controls and found that sensitivity was equal or greater than 95% for all groups. Specificity was equal or greater than 91%. In conclusion, we present consistent clinical findings from global populations with CdLS while demonstrating how facial analysis technology can be a tool to support accurate diagnoses in the clinical setting. This work, along with prior studies in this arena, will assist in earlier detection, recognition, and treatment of CdLS worldwide.
Pena–Shokeir syndrome (PSS) type 1, also known as fetal akinesia deformation sequence, is a rare genetic syndrome that almost always results in intrauterine or early neonatal death. It is characterized by markedly decreased fetal movements, intrauterine growth restriction, joint contractures, short umbilical cord, and features of pulmonary hypoplasia. Antenatal diagnosis can be difficult. Ultrasound features are varied and may overlap with those of Trisomy 18. The poor prognosis of PSS is due to pulmonary hypoplasia, which is an important feature that distinguishes PSS from arthrogryposis multiplex congenital without pulmonary hypoplasia, which has a better prognosis. If diagnosed in the antenatal period, a late termination of pregnancy can be considered following ethical discussion (if the law allows). In most cases, a diagnosis is only made in the neonatal period. Parents of a baby affected with PSS require detailed counseling that includes information on the imprecise recurrence risks and a plan for subsequent pregnancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.