Apoptosis is a normal process by which cells die and are eliminated from tissue by phagocytosis [1]. It is involved in regulating cell numbers in adult tissues and in eliminating 'excess' cells during embryogenesis and development. Apoptosis is mediated by activation of caspases, which then cleave a variety of cellular substrates and thereby cause the characteristic morphology of apoptotic cells (rounded cells, condensed chromatin, susceptibility to phagocytosis) [2]. Although apoptosis has been well documented in nematodes, insects and mammals, it is not yet clear how early in evolution apoptosis or its component enzymes arose. In the simple metazoan Hydra vulgaris, cell death regulates cell numbers [3] [4] [5]. In starved animals, for example, epithelial cell proliferation continues at a nearly normal rate although the tissue does not increase in size; the excess cells produced are eliminated by phagocytosis. Cell death can also be induced in wild-type hydra by treatment with colchicine [6] or in a mutant strain (sf-1) by temperature shock [7]. Here, we show that cell death in hydra is morphologically indistinguishable from apoptosis in higher animals, that hydra polyps express two genes with strong homology to members of the caspase 3 family, and that caspase-3-specific enzyme activity accompanies apoptosis in hydra. The occurrence of apoptosis and caspases in a member of the ancient metazoan phylum Cnidaria supports the idea that the invention of apoptosis was an essential feature of the evolution of multicellular animals.
Cnidarians are among the simplest metazoan animals and are well known for their remarkable regeneration capacity. They can regenerate any amputated head or foot, and when dissociated into single cells, even intact animals will regenerate from reaggregates. This extensive regeneration capacity is mediated by epithelial stem cells, and it is based on the restoration of a signaling center, i.e., an organizer. Organizers secrete growth factors that act as long-range regulators in axis formation and cell differentiation. In Hydra, Wnt and TGF-beta/Bmp signaling pathways are transcriptionally up-regulated early during head regeneration and also define the Hydra head organizer created by de novo pattern formation in aggregates. The signaling molecules identified in Cnidarian regeneration also act in early embryogenesis of higher animals. We suppose that they represent a core network of molecular interactions, which could explain at least some of the mechanisms underlying regeneration in vertebrates. Developmental Dynamics 226:257-267, 2003.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.