Abstract-It is well-known that early integration (also called data fusion) is effective when the modalities are correlated, and late integration (also called decision or opinion fusion) is optimal when modalities are uncorrelated. In this paper, we propose a new multimodal fusion strategy for open-set speaker identification using a combination of early and late integration following canonical correlation analysis (CCA) of speech and lip texture features. We also propose a method for high precision synchronization of the speech and lip features using CCA prior to the proposed fusion. Experimental results show that i) the proposed fusion strategy yields the best equal error rates (EER), which are used to quantify the performance of the fusion strategy for open-set speaker identification, and ii) precise synchronization prior to fusion improves the EER; hence, the best EER is obtained when the proposed synchronization scheme is employed together with the proposed fusion strategy. We note that the proposed fusion strategy outperforms others because the features used in the late integration are truly uncorrelated, since they are output of the CCA analysis.
A large class of physical phenomenon observed in practice exhibit non-Gaussian behavior. In this letter, a-stable distributions, which have heavier tails than Gaussian distribution, are considered to model non-Gaussian signals. Adaptive signal procesgSng in the presence of such a noise is a requirement of many practical problems. Since direct application of commonly used adaptation techniques fall in these applications, new algorithms for adaptive filtering for a-stable random processes are introduced.
In this letter, a new set of speech feature parameters based on multirate signal processing and the Teager energy operator is introduced. The speech signal is first divided into nonuniform subbands in mel-scale using a multirate filterbank, then the Teager energies of the subsignals are estimated. Finally, the feature vector is constructed by log-compression and inverse discrete cosine transform (DCT) computation. The new feature parameters have robust speech recognition performance in the presence of car engine noise
Abstract-There have been several studies that jointly use audio, lip intensity, and lip geometry information for speaker identification and speech-reading applications. This paper proposes using explicit lip motion information, instead of or in addition to lip intensity and/or geometry information, for speaker identification and speech-reading within a unified feature selection and discrimination analysis framework, and addresses two important issues: 1) Is using explicit lip motion information useful, and, 2) if so, what are the best lip motion features for these two applications? The best lip motion features for speaker identification are considered to be those that result in the highest discrimination of individual speakers in a population, whereas for speech-reading, the best features are those providing the highest phoneme/word/phrase recognition rate. Several lip motion feature candidates have been considered including dense motion features within a bounding box about the lip, lip contour motion features, and combination of these with lip shape features. Furthermore, a novel two-stage, spatial, and temporal discrimination analysis is introduced to select the best lip motion features for speaker identification and speech-reading applications. Experimental results using an hidden-Markov-modelbased recognition system indicate that using explicit lip motion information provides additional performance gains in both applications, and lip motion features prove more valuable in the case of speech-reading application.Index Terms-Bayesian discriminative feature selection, lip motion, speaker identification, speech recognition, temporal discriminative feature selection.
Abstract-We propose a new two-stage framework for joint analysis of head gesture and speech prosody patterns of a speaker towards automatic realistic synthesis of head gestures from speech prosody. In the first stage analysis, we perform Hidden Markov Model (HMM) based unsupervised temporal segmentation of head gesture and speech prosody features separately to determine elementary head gesture and speech prosody patterns, respectively, for a particular speaker. In the second stage, joint analysis of correlations between these elementary head gesture and prosody patterns is performed using Multi-Stream HMMs to determine an audio-visual mapping model. The resulting audio-visual mapping model is then employed to synthesize natural head gestures from arbitrary input test speech given a head model for the speaker. In the synthesis stage, the audio-visual mapping model is used to predict a sequence of gesture patterns from the prosody pattern sequence computed for the input test speech. The Euler angles associated with each gesture pattern are then applied to animate the speaker head model. Objective and subjective evaluations indicate that the proposed synthesis by analysis scheme provides natural looking head gestures for the speaker with any input test speech, as well as in "prosody transplant" and "gesture transplant" scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.