In resource-constrained devices such as Subscriber Identity Module (SIM), the possibility of using authentication and key exchange methods, which include the mutual verification of two parties to ensure the security of communication, provides a significant advantage. As the cost efficient computations may not be efficiently performed on resource-constrained devices, security is the main problem for SIMs. With the advancing technology and the use of quantum computers, it is predicted that this may lead to threats. It is a well-known fact that security on traditional public key cryptosystems will become vulnerable by using quantum computers due to Shor's algorithm. In this paper, two different resistant to quantum attacks structures are proposed to ensure secure communication between SIM and service providers. In the proposed methods, Advanced Encryption Standard (AES-256) is used for communication with resourceconstrained devices, and N-th degree Truncated polynomial Ring Units (NTRU) encryption system is used for communication with servers. Two methods are proposed, one with the private key and one without the private key in the production phase. This protocol provides authentication, data privacy and integrity for post-quantum SIM cards. The proposed method is inspired by the FLAT (Federated Lightweight Authentication) protocol. However, the main difference from the FLAT protocol is that it has more nodes and is resistant to quantum attacks.
The purpose of the SIMSec protocol is to provide the infrastructure to enable secured access between the SIM (Subscriber Identity Module) card which doesn't have an ephemeral key installed during production and the service provider. This infrastructure has a form based on agreements among the mobile network manufacturer, the user, the service provider and the card manufacturer. In order to secure transactions, authentication methods are used based on the fact that both parties can verify that they are the parties they claim to be. In this study, the key exchange and authentication models in the literature have been surveyed and the password-based authentication model is chosen. For the SIMSec protocol, the password-based authentication algorithm is integrated into the SIMSec protocol. Thanks to the proposed new structure, phase differences in the SIMSec protocol are shown. As a result, a new key exchange protocol is proposed for SIM cards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.