In this study, a total of 10 bacterial strains were screened for their ability to reduce cyclohexyl(phenyl)methanone 1 to its corresponding alcohol. Among these strains, Lactobacillus paracasei BD101 was found to be the most successful biocatalyst to reduce the ketones to the corresponding alcohols.The reaction conditions were systematically optimized for the reducing agent L paracasei BD101, which showed high enantioselectivity and conversion for the bioreduction. The preparative scale asymmetric reduction of cyclohexyl(phenyl)methanone (1) by L paracasei BD101 gave (S)cyclohexyl(phenyl)methanol (2) with 92% yield and >99% enantiomeric excess. The preparative scale study was carried out, and a total of 5.602 g of (S)-cyclohexyl(phenyl)methanol in high enantiomerically pure form (>99% enantiomeric excess) was produced. L paracasei BD101 has been shown to be an important biocatalyst in asymmetric reduction of bulky substrates. This study demonstrates the first example of the effective synthesis of (S)-cyclohexyl(phenyl)methanol by the L paracasei BD101 as a biocatalyst in preparative scale.
Piperonyl ring is found in a number of naturally occurring compounds and possesses enormous biological activities. There are many studies in the literature with compounds containing a piperonyl ring, but there are very few studies on the synthesis of chiral piperonyl carbinol. The objective of this study was to determine the microbial reduction ability of bacterial strains and to reveal the effects of different physicochemical parameters on this reduction ability. A total of 15 bacterial isolates were screened for their ability to reduce 1-(benzo[d][1,3]dioxol-5-yl) ethanone 1 to its corresponding alcohol. Among these isolates Lactobacillus paracasei BD101 was found to be the most successful biocatalyst to reduce the ketone containing piperonyl ring to the corresponding alcohol. The reaction conditions were systematically optimized for the reducing agent L paracasei BD101, which showed high enantioselectivity and conversion for the bioreduction. The preparative scale study was performed, and a total of 3.72 g of (R)-1-(1,3-benzodioxol-5-yl) ethanol in high enantiomeric form (>99% enantiomeric excess) was produced in a mild, cheap, and environment-friendly process. This study demonstrates that L paracasei BD101 can be used as a biocatalyst to obtain chiral carbinol with excellent yield and selectivity.
In this letter, a dual‐mode dual‐band microstrip bandpass filter design with center frequency control methodology is presented by using dual‐mode meandered loop resonator. Center frequencies of the passbands can be controlled by changing the connection points of internally located square loop loading elements without changing the total surface area. These loading elements are also useful to obtain a compact configuration. In addition, while the first passband has two reflection zeros, the second passband has one reflection zero, as it is obtained from the harmonic of the first passband. Therefore, degenerate modes of the first passband can be excited by a perturbation element. Using patch or corner cut perturbation elements, elliptical and linear phase filtering characteristics can be obtained in the first passband, respectively. Two dual‐mode microstrip bandpass filters having elliptical and linear phase filtering characteristics were designed, fabricated, and measured. Measured results are in a very good agreement with the simulated results. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:639–642, 2015
Chiral secondary alcohols are valuable intermediates for many important enantiopure pharmaceuticals and biologically active molecules. In this work, we studied asymmetric reduction of aromatic ketones to produce the corresponding chiral secondary alcohols using lactic acid bacteria (LAB) as new biocatalysts. Seven LAB strains were screened for their ability to reduce acetophenones to their corresponding alcohols. Among these strains, Lactobacillus paracasei BD101 was found to be the most successful at reducing the ketones to the corresponding alcohols. The reaction conditions were further systematically optimized for this strain and high enantioselectivity (99%) and very good yields were obtained. These secondary alcohols were further tested for their antimicrobial activities against important pathogens and significant levels of antimicrobial activities were observed although these activities were altered depending on the secondary alcohols as well as their enantiomeric properties. The current methodology demonstrates a promising and alternative green approach for the synthesis of chiral secondary alcohols of biological importance in a cheap, mild, and environmentally useful process.
Optically active aromatic alcohols are valuable chiral building blocks of many natural products and chiral drugs. Lactobacillus paracasei BD87E6, which was isolated from a cereal-based fermented beverage, was shown as a biocatalyst for the bioreduction of 1-(benzofuran-2-yl) ethanone to (S)-1-(benzofuran-2-yl) ethanol with highly stereoselectivity. The bioreduction conditions were optimized using L. paracasei BD87E6 to obtain high enantiomeric excess (ee) and conversion. After optimization of the bioreduction conditions, it was shown that the bioreduction of 1-(benzofuran-2-yl)ethanone was performed in mild reaction conditions. The asymmetric bioreduction of the 1-(benzofuran-2-yl)ethanone had reached 92% yield with ee of higher than 99.9% at 6.73 g of substrate. Our study gave the first example for enantiopure production of (S)-1-(benzofuran-2-yl)ethanol by a biological green method.This process is also scalable and has potential in application. In this study, a basic and novel whole-cell mediated biocatalytic method was performed for the enantiopure production of (S)-1-(benzofuran-2-yl)ethanol in the aqueous medium, which empowered the synthesis of a precious chiral intermediary process to be converted into a sophisticated molecule for drug production. KEYWORDS (S)-1-(benzofuran-2-yl)ethanol, asymmetric bioreduction, chirality, Lactobacillus paracasei BD87E6, whole-cell biocatalysts
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.