In most state-of-the-art (SoTA) infrared small target detection algorithms, image regions are processed locally. More recently, some transformer-based algorithms have been proposed that account for separate image regions to detect small objects. Besides their success, transformer-based algorithms require more data when compared to classical methods. In these algorithms, massive datasets are used to achieve comparable performance with the SoTA methods for the RGB domain. There is no solid work in the literature about how much data is required to develop a transformer-based small target detection algorithm. By its nature, a small target does not contain discriminative contextual information. Thus, its blob-like shape and the contrast difference between the target and background are the main features exploited by the literature. Analyzing the required amount of data to obtain acceptable accuracy for infrared small target detection is the main motivation of this study.
Atmospheric turbulence poses a significant challenge to the performance of object detection models. Turbulence causes distortions, blurring, and noise in images by bending and scattering light rays due to variations in the refractive index of air. This results in non-rigid geometric distortions and temporal fluctuations in the electromagnetic radiation received by optical systems. This paper explores the effectiveness of turbulence image augmentation techniques in improving the accuracy and robustness of thermal-adapted and deep learning-based object detection models under atmospheric turbulence. Three distinct approximation-based turbulence simulators (geometric, Zernike-based, and P2S) are employed to generate turbulent training and test datasets. The performance of three state-of-theart deep learning-based object detection models: RTMDet-x, DINO-4scale, and YOLOv8-x, is employed on these turbulent datasets with and without turbulence augmentation during training. The results demonstrate that utilizing turbulence-specific augmentations during model training can significantly improve detection accuracy and robustness against distorted turbulent images. Turbulence augmentation enhances performance even for a non-turbulent test set.
Atmospheric turbulence has a degrading effect on the image quality of long-range observation systems. As a result of various elements such as temperature, wind velocity, humidity, etc., turbulence is characterized by random fluctuations in the refractive index of the atmosphere. It is a phenomenon that may occur in various imaging spectra such as the visible or the infrared bands. In this paper, we analyze the effects of atmospheric turbulence on object detection performance in thermal imagery. We use a geometric turbulence model to simulate turbulence effects on a medium-scale thermal image set, namely "FLIR ADAS v2". We apply thermal domain adaptation to state-of-theart object detectors and propose a data augmentation strategy to increase the performance of object detectors which utilizes turbulent images in different severity levels as training data. Our results show that the proposed data augmentation strategy yields an increase in performance for both turbulent and non-turbulent thermal test images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.