In this article, we construct a new numerical approach for solving the time-fractional FokkerPlanck equation. The shifted Jacobi polynomials are used as basis functions, and the fractional derivative is described in the sense of Caputo. The proposed approach is a combination of shifted Jacobi Gauss-Lobatto scheme for the spatial discretization and the shifted Jacobi Gauss-Radau scheme for temporal approximation. The problem is then reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. In addition, our numerical algorithm is also applied for solving the space-fractional Fokker-Planck equation and the timespace-fractional Fokker-Planck equation. Numerical results are consistent with the theoretical analysis, indicating the high accuracy and effectiveness of the proposed algorithm.
We introduce a new numerical algorithm for solving one-dimensional time-fractional Tricomi-type equations (T-FTTEs). We used the shifted Jacobi polynomials as basis functions and the derivatives of fractional is evaluated by the Caputo definition. The shifted Jacobi Gauss-Lobatt algorithm is used for the spatial discretization, while the shifted Jacobi Gauss-Radau algorithmis applied for temporal approximation. Substituting these approximations in the problem leads to a system of algebraic equations that greatly simplifies the problem. The proposed algorithm is successfully extended to solve the two-dimensional T-FTTEs. Extensive numerical tests illustrate the capability and high accuracy of the proposed methodologies.
The temporal-second-order KdV equation, which describes the propagation of two wave modes with different phase velocities and same dispersion relation, nonlinearity and dispersion parameters are investigated. The similarity reductions and new exact solutions are obtained via the Kudryashov method and a new version of Kudryashov method. Furthermore, the conservation laws are derived using the new conservation theorem. The bilinear forms and bilinear Bäcklund transformation of the temporal-second-order KdV equation are derived through the binary Bell polynomial. Moreover, the N-soliton solutions of the equation are constructed with the help of the Hirota method. The characteristics and interaction of the solitons are discussed graphically. We discuss the effect of the phase velocities [Formula: see text] and [Formula: see text] and the parameters of nonlinearity [Formula: see text] and [Formula: see text] on the soliton amplitudes and velocities. Bifurcation method of dynamical systems is employed to investigate bifurcation of solitary waves in the temporal-second-order KdV equation.
In this article, we investigate a (3+1)-dimensional Schamel–Zakharov–Kuznetsov–Burgers (SZKB) equation, which describes the nonlinear plasma-dust ion acoustic waves (DIAWs) in a magnetised dusty plasma. With the aid of the Kudryashov method and symbolic computation, a set of new exact solutions for the SZKB equation are derived. By introducing two special functions, a variational principle of the SZKB equation is obtained. Conservation laws of the SZKB equation are obtained by two different approaches: Lie point symmetry and the multiplier method. Thus, the conservation laws here can be useful in enhancing the understanding of nonlinear propagation of small amplitude electrostatic structures in the dense, dissipative DIAWs’ magnetoplasmas. The properties of the shock wave solutions structures are analysed numerically with the system parameters. In addition, the electric field of this solution is investigated. Finally, we will study the physical meanings of solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.