Graph convolutional networks (GCNs) based on convolutional operations have been developed recently to extract high-level representations from graph data. They have shown advantages in many critical applications, such as recommendation system, natural language processing, and prediction of chemical reactivity. The problem for the GCN is that its target applications generally pose stringent constraints on latency and energy efficiency. Several studies have demonstrated that field programmable gate array (FPGA)-based GCNs accelerators, which balance high performance and low power consumption, can continue to achieve orders-of-magnitude improvements in the inference of GCNs models. However, there still are many challenges in customizing FPGA-based accelerators for GCNs. It is necessary to sort out the current solutions to these challenges for further research. For this purpose, we first summarize the four challenges in FPGA-based GCNs accelerators. Then we introduce the process of the typical GNN algorithm and several examples of representative GCNs. Next, we review the FPGA-based GCNs accelerators in recent years and introduce their design details according to different challenges. Moreover, we compare the key metrics of these accelerators, including resource utilization, performance, and power consumption. Finally, we anticipate the future challenges and directions for FPGA-based GCNs accelerators: algorithm and hardware co-design, efficient task scheduling, higher generality, and faster development.
<abstract> <p>The transformer model has recently been a milestone in artificial intelligence. The algorithm has enhanced the performance of tasks such as Machine Translation and Computer Vision to a level previously unattainable. However, the transformer model has a strong performance but also requires a high amount of memory overhead and enormous computing power. This significantly hinders the deployment of an energy-efficient transformer system. Due to the high parallelism, low latency, and low power consumption of field-programmable gate arrays (FPGAs) and application specific integrated circuits (ASICs), they demonstrate higher energy efficiency than Graphics Processing Units (GPUs) and Central Processing Units (CPUs). Therefore, FPGA and ASIC are widely used to accelerate deep learning algorithms. Several papers have addressed the issue of deploying the Transformer on dedicated hardware for acceleration, but there is a lack of comprehensive studies in this area. Therefore, we summarize the transformer model compression algorithm based on the hardware accelerator and its implementation to provide a comprehensive overview of this research domain. This paper first introduces the transformer model framework and computation process. Secondly, a discussion of hardware-friendly compression algorithms based on self-attention and Transformer is provided, along with a review of a state-of-the-art hardware accelerator framework. Finally, we considered some promising topics in transformer hardware acceleration, such as a high-level design framework and selecting the optimum device using reinforcement learning.</p> </abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.