By coupling thin-film microextraction (TFME) with surface-enhanced Raman scattering (SERS), a facile method was developed for the determination of sulfur dioxide (SO2), the most effective food additive in winemaking technology. The TFME substrate was made by free settling of sea urchin-like ZnO nanomaterials on a glass sheet. The headspace sampling (HS) procedure for SO2 was performed in a simple homemade device, and then the SO2 was determined using SERS after uniformly dropping or spraying a SERS-active substrate (gold nanoparticles, AuNPs) onto the surface of the TFME substrate. A reproducible and strong SERS response of the SO2 absorbed onto the ZnO substrate was obtained. After condition optimization, the SERS signal intensity at a shift of 600 cm(-1) and the SO2 concentration showed a good linearity in the range of 1-200 μg/mL, and the linear correlation coefficient was 0.992. The detection limit for SO2 was found to be 0.1 μg/mL. The HS-TFME-SERS method was applied for the determination of SO2 in wine, and the results obtained agreed very well with those obtained using the traditional distillation and titration method. Analysis of variance and Student t test show that there is no significant difference between the two methods, indicating that the newly developed method is fast, convenient, sensitive and has selective characteristics in the determination of SO2 in wine.
A method for the simultaneous determination of 23 phthalate esters in food samples by solid-phase extraction coupled with gas chromatography-mass spectrometry (SPE-GC-MS) was developed and evaluated. The samples were extracted with hexane or acetonitrile, and cleaned up with a glass ProElut PSA SPE column. The identification and quantification were performed by GC-MS in selected ion monitoring (SIM) mode. The extraction processes of different foods were investigated. The calibration curves of phthalate esters showed good linearity in the range of 0.05-5 mg/L (0.5-5 mg/L for diisononyl phthalate (DINP), diisodecyl-phthalate (DIDP)) with the correlation coefficients (r) between 0.984 8 and 0.999 6. The limits of detection of phthalate esters in food samples ranged from 0.005 to 0.05 mg/kg (S/N = 3) and the limits of quantification ranged from 0.02 to 0.2 mg/kg (S/N = 10). The average recoveries of 23 analytes spiked in 10 kinds of food matrices ranged from 77% to 112% with the relative standard deviations (RSDs, n = 6) of 4.1%-12.5%. The method is suitable for the determination of 23 phthalate esters simultaneously in foodstuffs with easy operation, high accuracy and precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.