Solvent-based carbon capture is the most commercially-ready technology for economically and sustainably reaching carbon emission reduction targets in the power sector. Globally, the technology has been deployed to deal with flue gases from large scale power plants and different carbon-intensive industries. The success of the technology is due to significant R&D activities on the process development and decades of industrial experience on acid gas removal processes from gaseous mixtures. In this paper, current status of PCC based on chemical absorption-commercial deployment and demonstration projects, analysis of different solvents and process configurations-is reviewed. Although some successes have been recorded in developing this technology, its commercialization has been generally slow as evidenced in the cancellation of high profile projects across the world. This is partly due to the huge cost burden of the technology and unpredictable government policies. Different research directions, namely new process development involving process intensification, new solvent development and a combination of both, are discussed in this paper as possible pathways for reducing the huge cost of the technology.
Intensified regenerator/stripper using rotating packed bed (RPB) for regeneration of rich-MEA solvent in post-combustion CO2 capture with chemical absorption process was studied through modelling and simulation in this paper. This is the first systematic study of RPB regenerator through modelling as there is no such publication in the open literature. Correlations for liquid and gas mass transfer coefficients, heat transfer coefficient, liquid holdup , interfacial area and pressure drop which are suitable for RPB regenerator were written in visual FORTRAN as subroutines and then dynamically linked with Aspen Plus ® rate-based model to replace the default mass and heat transfer correlations in the Aspen Plus ®. The model now represents intensified regenerator/stripper. Model validation shows good agreement between model predictions and experimental data from literature. Process analyses were performed to investigate the effect of rotor speed on the regeneration efficiency and regeneration energy (including motor power). The rotor speed was varied from 200 to 1200 rpm, which was selected to cover the validation range of rotor speed. Impact of reboiler temperature on the rate of CO2 stripping was also investigated. Effect of rich-MEA flow rate on regeneration energy and regeneration efficiency was studied. All the process analyses were done for wide range of MEA concentration (32.6 wt%, 50 wt% and 60 wt%). Comparative study between regenerator using packed column and intensified regenerator using RPB was performed and the study shows a size reduction of 9.691 times. This study indicates that RPB process has great potential in thermal regeneration application.
Rotating packed bed (RPB) absorber using monoethanolamine (MEA) as the solvent to capture CO2 is modelled at steady state condition in this study according to the first principles in gPROMS ®. The effect of eight different kinetic reaction models and five enhancement factors is examined based on the newly developed model. Selection of kinetic model has significant effect on the carbon capture level (CCL) but the effect of enhancement factor relation is not important. The steady state process model is validated against the experimental data and showed good agreement. The average absolute relative deviation for 12 case-runs is 3.5%. In addition, process analysis is performed to evaluate the effect of four factors namely rotor speed, MEA concentration in lean MEA solution, lean MEA solution temperature and lean MEA solution flow rate on CCL. Finally, orthogonal array design (OAD) method is applied to analyse the simultaneous effect of the above-mentioned factors in the CCL and motor power of RPB absorber by considering 25 scenarios. The result of using OAD revealed that rotor speed has the most important effect on CCL, and after that lean MEA solution flow rate has the second importance. In addition, the OAD method is used to find the proper combination of four factors that resulted in about 90% CCL with low motor power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.