Studies were carried out to assess the effects of stabilized (i.e., coated with organic polyacrylic stabilizer) and nonstabilized forms of zero-valent nanoiron (nZVI) on the development of Mytilus galloprovincialis embryos following 2 h exposure of the sperm prior to in vitro fertilization. Both forms of nZVI caused serious disruption of development, consisting of 30% mortality among spermatozoa with subsequent 20% decline in fertilization success, and delay in development, i.e., over 50% of the larvae were suspended in the trochophore stage. Significant DNA damage was also detected in sperm exposed to the highest exposure concentrations (10 mg L(-1)). Distinct dose response to the two different types of nZVI observed are linked to aggregation behavior that is controlled by the surface stabilizers. This work reports on conventional biomarkers (for membrane integrity, genotoxicity, and developmental toxicity) applied for the rapid assessment of toxicity of nZVI, which are able to detect surface property-related effects to meet the requirements of risk assessments for nanotechnology. The study highlights the potential ecotoxicological impact of an environmentally relevant engineered nanoparticle. Implications of the NOM-nZVI interactions regarding soil and groundwater remediation and wastewater treatment are discussed.
Benzotriazoles (BT) are applied as anticorrosive and de-icing agents and have been detected in a variety of aquatic ecosystems and municipal wastewater effluents. We have assessed the developmental effects of benzotriazole (CAS number 95-14-7) to the marine invertebrate Ciona intestinalis (Chordata, Ascidiae). At 15 +/- 1 degrees C, the 24 h No-Observed Effect Concentration (NOEC) and Lowest Observed Effect Concentration (LOEC) values based on embryo morphological development were 100 and >100 mg L(-1), respectively (nominal concentration under static conditions). After 48 h, the NOEC and LOEC values were 10 and 32 mg L(-1), respectively. Light and electron microscopy studies on benzotriazole-exposed larva indicated that the primary target cells were the extra-embryonic test cells, which are known to play a significant apoptotic role during ascidian metamorphosis. The visible decline of test cells in benzotriazole-exposed larvae raises the possibility that the compound interferes with the regulation of embryo development in protochordates such as C. intestinalis. Further research is warranted to assess the potential longer term sublethal impacts of benzotriazole in aquatic organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.