This paper presents a formalization of the knowledge domain of nondestructive quality control of polymeric composite components. The formalization scheme presented in this paper has been implemented in a prototype knowledge-based expert system (KBES), called NICC for nondestructive inspection of composite components, to help in the quality assurance of these parts. Geometric and bonding characteristics of individual and assembled components are taken into account, as opposed to the better understood evaluation of well-behaved test specimens. The use of nondestructive techniques in the inspection of plastic and polymeric composites is fairly recent and hence, the knowledge required to develop a KBES is still very scattered and not yet fully covered in the literature. This study demonstrates both the feasibility of compiling and representing this knowledge domain and the possibility of translating it into an efficient automated tool capable of giving reliable expert-like advice at low cost. The reasoning process is divided into three stages. In the first stage, a polymetric composite component is completely defined according to features that are relevant for nondestructive inspection. In the second stage, all the discontinuities that may be present in the component are determined. Finally, in the third stage, appropriate nondestructive testing procedures are identified to detect each of the possible discontinuities.
This paper presents a formalization of the knowledge domain of nondestructive quality control of polymeric composite components. The formalization scheme presented in this paper has been implemented in a prototype knowledge-based expert system (KBES), called NICC for nondestructive inspection of composite components, to help in the quality assurance of these parts. Geometric and bonding characteristics of individual and assembled components are taken into account, as opposed to the better understood evaluation of well-behaved test specimens. The use of nondestructive techniques in the inspection of plastic and polymeric composites is fairly recent and hence, the knowledge required to develop a KBES is still very scattered and not yet fully covered in the literature. This study demonstrates both the feasibility of compiling and representing this knowledge domain and the possibility of translating it into an efficient automated tool capable of giving reliable expert-like advice at low cost. The reasoning process is divided into three stages. In the first stage, a polymetric composite component is completely defined according to features that are relevant for nondestructive inspection. In the second stage, all the discontinuities that may be present in the component are determined. Finally, in the third stage, appropriate nondestructive testing procedures are identified to detect each of the possible discontinuities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.