In this paper, a new powerful deep learning framework, named as DENTECT, is developed in order to instantly detect five different dental treatment approaches and simultaneously number the dentition based on the FDI notation on panoramic X-ray images. This makes DENTECT the first system that focuses on identification of multiple dental treatments; namely periapical lesion therapy, fillings, root canal treatment (RCT), surgical extraction, and conventional extraction all of which are accurately located within their corresponding borders and tooth numbers. Although DENTECT is trained on only 1005 images, the annotations supplied by experts provide satisfactory results for both treatment and enumeration detection. This framework carries out enumeration with an average precision (AP) score of 89.4% and performs treatment identification with a 59.0% AP score. Clinically, DENTECT is a practical and adoptable tool that accelerates the process of treatment planning with a level of accuracy which could compete with that of dental clinicians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.