Strong scattering medium brings great difficulties to optical imaging, which is also a problem in medical imaging and many other fields. Optical memory effect makes it possible to image through strong random scattering medium. However, this method also has the limitation of limited angle field-of-view (FOV), which prevents it from being applied in practice. In this paper, a kind of practical convolutional neural network called PDSNet is proposed, which effectively breaks through the limitation of optical memory effect on FOV. Experiments is conducted to prove that the scattered pattern can be reconstructed accurately in real-time by PDSNet, and it is widely applicable to retrieve complex objects of random scales and different scattering media.
Imaging through scattering media is one of the hotspots in the optical field, and impressive results have been demonstrated via deep learning (DL). However, most of the DL approaches are solely data-driven methods and lack the related physics prior, which results in a limited generalization capability. In this paper, through the effective combination of the speckle-correlation theory and the DL method, we demonstrate a physics-informed learning method in scalable imaging through an unknown thin scattering media, which can achieve high reconstruction fidelity for the sparse objects by training with only one diffuser. The method can solve the inverse problem with more general applicability, which promotes that the objects with different complexity and sparsity can be reconstructed accurately through unknown scattering media, even if the diffusers have different statistical properties. This approach can also extend the field of view (FOV) of traditional speckle-correlation methods. This method gives impetus to the development of scattering imaging in practical scenes and provides an enlightening reference for using DL methods to solve optical problems.
Atmospheric scattering caused by suspended particles in the air severely degrades the scene radiance. This paper proposes a method to remove haze by using a neural network that combines scene polarization information. The neural network is self-supervised and online globally optimization can be achieved by using the atmospheric transmission model and gradient descent. Therefore, the proposed method does not require any haze-free image as the constraint for neural network training. The proposed approach is far superior to supervised algorithms in the performance of dehazing and is highly robust to the scene. It is proved that this method can significantly improve the contrast of the original image, and the detailed information of the scene can be effectively enhanced.
Scattering medium brings great difficulties to locate and reconstruct objects especially when the objects are distributed in different positions. In this paper, a novel physics and learning-heuristic method is presented to locate and image the object through a strong scattering medium. A novel physics-informed framework, named DINet, is constructed to predict the depth and the image of the hidden object from the captured speckle pattern. With the phase-space constraint and the efficient network structure, the proposed method enables to locate the object with a depth mean error less than 0.05 mm, and image the object with an average peak signal-to-noise ratio (PSNR) above 24 dB, ranging from 350 mm to 1150 mm. The constructed DINet firstly solves the problem of quantitative locating and imaging via a single speckle pattern in a large depth. Comparing with the traditional methods, it paves the way to the practical applications requiring multi-physics through scattering media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.