The formation and layer of ice lenses during the freezing of soil in cold regions is closely related to frozen heave and moisture immigration. The purpose of the paper is to explain the physical mechanisms pertaining to ice lens formation, which were analyzed and verified using numerical simulation results. Based on a few assumptions, the formation and layers of ice lenses are illuminated in the following steps: the initial stage of freezing, formation of the first layer of ice lens, formation of the second layer of ice lens, and formation of the final layer of ice lens. Compared with the numerical results of coupled thermo–hydro–mechanical simulations of one-side freezing of soil columns in an open system, the proposed analysis method of the formation and layers of ice lenses is verified to be reasonable, and it is demonstrated that the classical criterion for the formation of ice lens in freezing saturated soil is only suitable for the final layer of ice lens. Finally, a new criterion, in terms of flux rate, for the formation of ice lens is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.