Balancing the supply and demand for ride-sourcing companies is a challenging issue, especially with real-time requests and stochastic traffic conditions of large-scale congested road networks. To tackle this challenge, this paper proposes a robust and scalable approach that integrates reinforcement learning (RL) and a centralized programming (CP) structure to promote real-time taxi operations. Both real-time order matching decisions and vehicle relocation decisions at the microscopic network scale are integrated within a Markov decision process framework. The RL component learns the decomposed statevalue function, which represents the taxi drivers' experience, the off-line historical demand pattern, and the traffic network congestion. The CP component plans non-myopic decisions for drivers collectively under the prescribed system constraints to explicitly realize cooperation. Further, to circumvent sparse reward and sample imbalance problems over the microscopic road network, this paper proposed temporal-difference learning algorithm with prioritized gradient descent and adaptive exploration techniques.A simulator is built and trained with the Manhattan road network and New York City yellow taxi data to simulate the real-time vehicle dispatching environment. Both centralized and decentralized taxi dispatching policies are examined with the simulator. This case study shows that the proposed approach can further improve taxi drivers' profits while reducing customers' waiting times compared to several existing vehicle dispatching algorithms.
Efficient traffic signal control is an important means to alleviate urban traffic congestion. Reinforcement learning (RL) has shown great potentials in devising optimal signal plans that can adapt to dynamic traffic congestion. However, several challenges still need to be overcome. Firstly, a paradigm of state, action, and reward design is needed, especially for an optimality-guaranteed reward function. Secondly, the generalization of the RL algorithms is hindered by the varied topologies and physical properties of intersections. Lastly, enhancing the cooperation between intersections is needed for large network applications. To address these issues, the Option-Action RL framework for universal Multi-intersection control (OAM) is proposed. Based on the well-known cell transmission model, we first define a lane-cell-level state to better model the traffic flow propagation. Based on this physical queuing dynamics, we propose a regularized delay as the reward to facilitate temporal credit assignment while maintaining the equivalence with minimizing the average travel time. We then recapitulate the phase actions as the constrained combinations of lane options and design a universal neural network structure to realize model generalization to any intersection with any phase definition. The multiple-intersection cooperation is then rigorously discussed using the potential game theory.
We test the OAM algorithm under four networks with different settings, including a city-level scenario with 2,048 intersections using synthetic and real-world datasets. The results show that the OAM can outperform the state-of-the-art controllers in reducing the average travel time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.